Math, asked by 8076215360, 2 months ago

PLZ TELL ME THIS ANSWER​

Attachments:

Answers

Answered by Anonymous
65

Answer:

Question :-

\mapsto \bf{\dfrac{5(1 - x) + 3(1 + x)}{1 - 2x} =\: 8}

To Find :-

  • What is the value of x.

Solution :-

\bigstar\: \: \sf\bold{\purple{\dfrac{5(1 - x) + 3(1 + x)}{1 - 2x} =\: 8}}

\leadsto \bf{\dfrac{5(1 - x) + 3(1 + x)}{1 - 2x} =\: 8}

\longrightarrow \sf \dfrac{5 - 5x + 3 + 3x}{1 - 2x} =\: 8

\longrightarrow \sf \dfrac{- 5x + 3x + 3 + 5}{1 - 2x} =\: 8

\longrightarrow \sf \dfrac{- 2x + 8}{1 - 2x} =\: 8

By doing cross multiplication we get,

\longrightarrow \sf - 2x + 8 =\: 8(1 - 2x)

\longrightarrow \sf - 2x + 8 =\: 8 - 16x

\longrightarrow \sf - 2x + 16x =\: 8 - 8

\longrightarrow \sf 14x =\: 0

\longrightarrow \sf x =\: \dfrac{0}{14}

\longrightarrow \sf\bold{\red{x =\: 0}}

{\small{\bold{\underline{\therefore\: The\: value\: of\: x\: is\: 0\: .}}}}

Answered by XxHappiestWriterxX
161

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ❍ \:  \:  \large \boxed{ \underline{ \pmb {  \sf \: Question}}} \\  \\  \\  \:  \:  \: ❍ \:  \:  \:  \:  \rm \dfrac{5(1 - x) + 3(1 + x)}{1 - 2x} = 8  \\  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ❍ \:  \:  \large \boxed{ \underline{ \pmb {  \sf \: Find}}} \\  \\    \: \dashrightarrow \: \rm What  \: is  \: the  \: value  \: of \:  x \:  ? \\  \\

 \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ❍ \:  \:  \large \boxed{ \underline{ \pmb {  \sf \: Solution}}} \\  \\   \:  \:  \:  \pink❍ \:  \:  \:  \rm \dfrac{5(1 - x) + 3 (1+x }{1 - 2x}  = 8 \\  \\  \:  \:  \:  \red❍ \rm \:  \:  \:  \:  \:   \dfrac{5 - 5x + 3 + 3x}{1 - 2x}  = 8 \\  \\   \:  \:  \: \blue❍ \:  \:  \:  \:  \rm \dfrac{ - 5x + 3x + 3 + 5}{1 - 2x}  = 8 \\  \\  \green❍ \:  \:  \:  \:  \rm \frac{ - 2x + 8}{1 - 2x}  = 8 \\  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ❍ \:  \:  \large \boxed{ \underline{ \pmb {  \sf \: Cross \:  multiplication}}} \\  \\  \dashrightarrow \:  \rm - 2x + 8 = 8(1 - 2x) \\  \\ \dashrightarrow \:  \rm - 2x + 8 = 8 - 16x \\  \\ \dashrightarrow \:  \rm - 2x + 16x = 8 - 8 \\  \\ \dashrightarrow \:  \rm14x = 0 \\  \\ \dashrightarrow \:  \rm \: x =  \dfrac{0}{14}  \\  \\ \dashrightarrow \:  \rm \: x = 0 \\  \\

 \:  \:  \:  \:  \:  \:  \:  \: \therefore \:  \:  \:  \: {\underline{\underline{\rm The  \: value  \: of \:  x = 0}}} \\  \\

Similar questions