plz tell the answer for 10th and 11 Qs
Answers
(10).
Given f(x) = 2x^4 + x^3 - 14x^2 - 19x - 6.
Given g(x) = x^2 + 3x + 2.
By splitting middle term, we get
⇒ x^2 + 2x + x + 2
⇒ x(x + 2) + 1(x + 2)
⇒ (x + 1)(x + 2).
Now,
If (x + 1) and (x + 2) are the factors of f(x), then f(x) is divisible by g(x).
If, f(-1) = 0 and f(-2) = 0, then f(x) is exactly divisible by g(x).
(i)
f(-1) = 2(-1)^4 + (-1)^3 - 14(-1)^2 - 19(-1) - 6
= 2 - 1 - 14 + 19 - 6
= 0.
(ii)
f(-2) = 2(-2)^4 + (-2)^3 - 14(-2)^2 - 19(-2) - 6
= 32 - 8 - 56 + 38 - 6
= 0.
Here, f(-1) = 0 and f(-2) = 0.
Therefore, f(x) is divisible by g(x).
------------------------------------------------------------------------------------------------------------
(11)
Given : (a + b + c)^3 - a^3 - b^3 - c^3
⇒ a^3 + b^3 + c^3 + 3a^2b + 3a^2c + 3ab^2 + 3b^2c + 3ac^2 + 3bc^2 + 6abc - a^3 - b^3 - c^3
⇒ 3a^2b + 3a^2c + 3ab^2 + 3b^2c + 3ac^2 + 3bc^2 + 6abc
⇒ 3(a^2b + a^2c + ab^2 + b^2c + ac^2 + bc^2 + 2abc)
⇒ 3(a^2b + a^2c + abc + ac^2 + ab^2 + abc + b^2c + bc^2)
⇒ 3(a^2 + ac + ab + bc)(b + c)
⇒ 3(a(a + c) + b(a + c))(b + c)
⇒ 3(a + b)(a + c)(b + c).
Hope it helps!