Math, asked by vinayakgamemaster42, 1 month ago

plz tell the answer plz ​

Attachments:

Answers

Answered by mathdude500
59

Given Question:-

 \rm \: 0 < x < 90\degree  \: and \: sinx - cosx = \dfrac{1}{2}, \: then \: tanx =

 \sf \: (1) \:  \: \dfrac{1 +  \sqrt{7} }{3}

 \sf \: (2) \:  \: \dfrac{8 -  \sqrt{7} }{3}

 \sf \: (3) \:  \: \dfrac{4 +  \sqrt{7} }{3}

 \sf \: (4) \:  \: \dfrac{\sqrt{7}  - 1}{3}

 \green{\large\underline{\sf{Solution-}}}

Given that

\rm :\longmapsto\:sinx - cosx = \dfrac{1}{2}

On squaring both sides, we get

\rm :\longmapsto\:(sinx - cosx)^{2} = \dfrac{1}{2}

\rm :\longmapsto\: {sin}^{2}x +  {cos}^{2}x - 2sinxcosx = \dfrac{1}{4}

We know,

\rm :\longmapsto\:\boxed{ \tt{ \:  {sin}^{2}x +  {cos}^{2}x  = 1}}

So, using this, we get

\rm :\longmapsto\: 1 - 2sinxcosx = \dfrac{1}{4}

\rm :\longmapsto\:  - 2sinxcosx = \dfrac{1}{4}  - 1

\rm :\longmapsto\:  - 2sinxcosx = \dfrac{1 - 4}{4}

\rm :\longmapsto\:  - 2sinxcosx = \dfrac{- 3}{4}

\rm :\longmapsto\: sinxcosx = \dfrac{3}{8}

\rm :\longmapsto\:8sinxcosx = 3

\red{\rm :\longmapsto\:Divide \: both \: by \:  {cos}^{2}x \: }

\rm :\longmapsto\:\dfrac{8sinx \: cosx}{ {cos}^{2}x}  = \dfrac{3}{ {cos}^{2} x}

\rm :\longmapsto\:8tanx = 3 {sec}^{2}x

We know,

\rm :\longmapsto\:\boxed{ \tt{ \:  {sec}^{2}x = 1 +  {tan}^{2}x \: }}

\rm :\longmapsto\:8tanx = 3(1 +  {tan}^{2}x)

\rm :\longmapsto\:8tanx = 3 +  3{tan}^{2}x

\rm :\longmapsto\:3 {tan}^{2}x - 8tanx + 3 = 0

So, its a quadratic equation in tanx, whose solution is given by using Quadratic formula.

\boxed{ \tt{ \: tanx =  \frac{ - b \:  \pm \:  \sqrt{ {b}^{2} - 4ac } }{2a}  \: }}

Here,

\red{\rm :\longmapsto\:a = 3}

\red{\rm :\longmapsto\:b =  - 8}

\red{\rm :\longmapsto\:c =  3}

So, on substituting the values, we get

\rm :\longmapsto\:tanx = \dfrac{ - ( - 8) \:  \pm \:  \sqrt{ {( - 8)}^{2}  - 4(3)(3)} }{2 \times 3}

\rm :\longmapsto\:tanx = \dfrac{8 \:  \pm \:  \sqrt{ 64 - 36} }{6}

\rm :\longmapsto\:tanx = \dfrac{8 \:  \pm \:  \sqrt{28} }{6}

\rm :\longmapsto\:tanx = \dfrac{8 \:  \pm \:  \sqrt{2 \times 2 \times 7} }{6}

\rm :\longmapsto\:tanx = \dfrac{8 \:  \pm \:  2\sqrt{7} }{6}

\rm :\longmapsto\:tanx = \dfrac{4 \:  \pm \:  \sqrt{7} }{3}

So,

\rm :\longmapsto\:tanx = \dfrac{4 \:   +  \:  \sqrt{7} }{3} \:  \: or \:  \: \dfrac{4 \:    - \:  \sqrt{7} }{3}

  • Hence, Option (3) is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by lohitjinaga5
1

Answer:

\rm :\longmapsto\:\boxed{ \tt{ \: {sin}^{2}x + {cos}^{2}x = 1}}</p><p>\rm :\longmapsto\: 1 - 2sinxcosx = \dfrac{1}{4}</p><p>\rm :\longmapsto\: - 2sinxcosx = \dfrac{1 - 4}{4}</p><p>\rm :\longmapsto\: sinxcosx = \dfrac{3}{8}</p><p>\rm :\longmapsto\:\dfrac{8sinx \: cosx}{ {cos}^{2}x} = \dfrac{3}{ {cos}^{2} x}

Similar questions