Math, asked by Proman234, 1 month ago

Plz tell the answer with proper explanation of ques 10.​

Attachments:

Answers

Answered by Vaish2934
0

Step-by-step explanation:

From the figure 

From the figure AD∥BC,BD is the transversal line 

From the figure AD∥BC,BD is the transversal line ⟹∠ADB=∠DBC     (∵alternate angles)

From the figure AD∥BC,BD is the transversal line ⟹∠ADB=∠DBC     (∵alternate angles)⟹z=30∘

From the figure AD∥BC,BD is the transversal line ⟹∠ADB=∠DBC     (∵alternate angles)⟹z=30∘Also

From the figure AD∥BC,BD is the transversal line ⟹∠ADB=∠DBC     (∵alternate angles)⟹z=30∘Also100∘,x are supplementary angles 

From the figure AD∥BC,BD is the transversal line ⟹∠ADB=∠DBC     (∵alternate angles)⟹z=30∘Also100∘,x are supplementary angles So x=180∘−100∘=80∘

From the figure AD∥BC,BD is the transversal line ⟹∠ADB=∠DBC     (∵alternate angles)⟹z=30∘Also100∘,x are supplementary angles So x=180∘−100∘=80∘x,y,30∘ forms a triangle 

From the figure AD∥BC,BD is the transversal line ⟹∠ADB=∠DBC     (∵alternate angles)⟹z=30∘Also100∘,x are supplementary angles So x=180∘−100∘=80∘x,y,30∘ forms a triangle ⟹x+y+30∘=180∘

From the figure AD∥BC,BD is the transversal line ⟹∠ADB=∠DBC     (∵alternate angles)⟹z=30∘Also100∘,x are supplementary angles So x=180∘−100∘=80∘x,y,30∘ forms a triangle ⟹x+y+30∘=180∘⟹y=180∘−80∘−30∘=70∘

Answered by IamIronMan0
0

Answer:

x = 80° , y = 70° and z = 30°

Step-by-step explanation:

Since ABCD is a parallelogram so AD and BC are parallel lines and angles CBD = 30 ° and ADB = z are alternate angles , so z = 30° .

sum of angles on a straight line is 180° , so

x = 180 - 100 = 80° .

Now in ∆BOC ( O is intersection point of diagonals ) sum of angles is 180°

x + y + 30 = 180 \\  \\ 80 + y + 30 = 180 \\  \\ y = 180 - 110 = 70

So y = 70°

Similar questions