Math, asked by vibhashukla8894, 22 hours ago

plz tell the corect answer guys​

Attachments:

Answers

Answered by poojasharmahr123
1

Answer:

no.1

Step-by-step explanation:

Question 1st

1. 60°

2. 55°

3.

Question 2nd

1. 50°

2.

3. 45°

Answered by thesiddhartha
2

Answer:

Step-by-step explanation:

1. In Circle, Central Angle (at O) = Twice the Inscribed angle (at C)

                x = 2 * 30°

                 x= 60°

2. Using Same Property (1)

    Central Angle (at O) = Twice the Inscribed angle (at C)  

                          110°  = 2x

                             x   = 55°

3. In Cirlce, Angles formed by the same arc(A,B) on the circumference of the circle is always equal.

   so, ∠AOB = ∠ACB

             80° = x

4 .  AOB is a straight line.

      ∠AOC + ∠BOC =180°

      ∠AOC + 80° = 180°

                ∠AOC = 100°

    Central Angle (at O) = Twice the Inscribed angle (at C)  

                     100° = 2x

                        50° = x

5. In figure, AO = OB ( it is Radius)

            So it is a Isosceles Trinangle

             ∠OAB = ∠OBA

            ∠OBA = 35°

  Central Angle (at O) = Twice the Inscribed angle (at C)

                      ∠AOB = 2x

Sum of Angles of Triangle = 180°

∠AOB +∠OBA+∠OAB = 180°

 2x + 35° + 35° = 180°

          2x = 180° - 70°

           x = 110°/2

           x = 55°

6.  Extend the AO , perpendicular on BC ,say point E

     In Triangle BEO

           ∠OBE + ∠OEB + ∠BOE = 180°

            25° + 90° + ∠BOE = 180°

                              ∠BOE = 180° - 115°

                               ∠BOE = 65°

           ∠AOB+ ∠BOE = 180°         (Sum of angle on straight line)

             x + 65° = 180°

                  x = 115°            

Similar questions