Plz tell the que
A wire 112 cm........
???
Attachments:
Answers
Answered by
1
Length of wire = Perimeter of triangle
112 = Hypotenuse + Base + Perpendicular
=> 112 = 50 + Base +Perpendicular
=> Base + Perpendicular = 62
Let the Base be a
Perpendicular = 62 - a
By Pythagoras theoram
(a) ^2 + (62-a)^2 = 50^2
=> a^2 + 3844 +a^2 - 124a = 2500
=> 2a^2 - 124a +3844 - 2500 = 0
=> 2a^2 - 124a + 1344 = 0
=> a^2 - 62a + 672 = 0
=> a^2 - 14a - 48a + 672 = 0
=> a(a-14) - 48(a-14) = 0
=> (a-14) (a-48) = 0
a= 14 and 48
Base = 14 cm
Perpendicular = 48 cm
112 = Hypotenuse + Base + Perpendicular
=> 112 = 50 + Base +Perpendicular
=> Base + Perpendicular = 62
Let the Base be a
Perpendicular = 62 - a
By Pythagoras theoram
(a) ^2 + (62-a)^2 = 50^2
=> a^2 + 3844 +a^2 - 124a = 2500
=> 2a^2 - 124a +3844 - 2500 = 0
=> 2a^2 - 124a + 1344 = 0
=> a^2 - 62a + 672 = 0
=> a^2 - 14a - 48a + 672 = 0
=> a(a-14) - 48(a-14) = 0
=> (a-14) (a-48) = 0
a= 14 and 48
Base = 14 cm
Perpendicular = 48 cm
Answered by
0
Length of wire = Perimeter of triangle
112 = Hypotenuse + Base + Perpendicular
=> 112 = 50 + Base +Perpendicular
=> Base + Perpendicular = 62
Let the Base be a
Perpendicular = 62 - a
By Pythagoras theoram
(a) ² + (62-a)² = 50²
=> a² + 3844 +a² - 124a = 2500
=> 2a² - 124a +3844 - 2500 = 0
=> 2a² - 124a + 1344 = 0
=> a² - 62a + 672 = 0
=> a² - 14a - 48a + 672 = 0
=> a(a-14) - 48(a-14) = 0
=> (a-14) (a-48) = 0
a= 14 and 48
Base = 14 cm
Perpendicular = 48 cm
hope it helped ⚡
Similar questions