Math, asked by lupin2739C, 8 months ago

plz tell this thing is a=/</>b​

Attachments:

Answers

Answered by arjunsinghss731
0

Answer:

please ask this question on google you will get correct answer

Answered by aryan073
1

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\huge{\mathfrak{\purple{\boxed{\orange{\underbrace{\overbrace{\green{‡Answer}}}}}}}}

 \:  \:  \:  \:  \:  \star \displaystyle  \underline {\boxed{ \bf \red{as \: we \: know \: that}}}

  \:  \:  \: \blue \star \displaystyle \underline{  \boxed{ \bf{quadratic \: equation}}}  \to \displaystyle \sf {(1)the \: equation \: having \: two \: roots \: (2)it \: is \: in \: the \: form \: of \:  {ax}^{2}  + bx + c = 0}

 \:  \:  \ \:  \ \ \ \sf{(3) for \: finding \: the \: value \: of \: discriminant \: we \: use \: formula \: ( {b}^{2}  - 4ac)}

 \:  \:  \:  \bigstar \displaystyle \boxed{ \bf\red{ \: properties \:of \:  discriminant \: form}}

 \:  \:  \:  \bullet \rm{ {b}^{2}  - 4ac &gt; 0 \:  \: roots \: are \: real \: and \: distinct}

 \:  \:  \:  \bullet \rm{ {b}^{2}  - 4ac &gt; 0 \:  \:  \:  \: roots \: are \: real \: and \: unequal}

 \:  \:  \:  \bullet  \rm{ {b}^{2}  - 4ac = 0 \: roots \: are \: imaginary}

 \:  \:  \pink \bigstar \underline {\boxed { \bf \red{ \: formula \: method}}}

 \:  \:  \:  \implies  \boxed{ \sf{x =  \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a} }}

 \:  \:  \:  \:  \dashrightarrow :  \sf{  \alpha \: and \beta \: are \: the \: roots \: of \: the \: quadratic \: equation}

 \:  \:  \:  \:  \bullet \bf{ \alpha =  \frac{ - b +   \sqrt {{b}^{2}  - 4ac}}{2a} } \:  \:  \: ........... \alpha &gt;  \beta

 \:  \:  \:  \:  \bullet \bf { \beta =  \frac{ - b -  \sqrt{ {b}^{2}  - 4ac} }{2a} } \:  \:  \:  \: ....... \alpha &lt;  \beta

 \:  \:  \:  \:   \mapsto \boxed { \tt \pink{if \:  \alpha=  \frac{ - b -  \sqrt{ {b}^{2}  - 4ac} }{2a} \:  \: then \:  \alpha &gt;  \beta }}

 \:  \:  \:  \bigstar  \mathfrak{hence \: proved}

Similar questions