Math, asked by sanamurray, 6 months ago

plz thoda jldi....urgent h​

Attachments:

Answers

Answered by aryan073
0

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\huge\underline\mathcal\red{Answer}

Q1) To draw a graph of 3x+10y=-57 . Find y when x=1 .

 \:  \:  \boxed{ \bf{solution \to}}

 \:  \: \\   \implies \displaystyle \tt{3x + 10y =  - 54...given \: equation}

 \:   \\ \implies \displaystyle \tt{ \color{brown} \: to \: find \: the \: value \: of \: y \: at \: given \: value \: x = 1}

 \:  \:  \implies \displaystyle \tt{3x + 10y =  - 54}

 \:  \implies \displaystyle \tt{3(1) + 10y =  - 54}

 \:  \implies \displaystyle \tt{3 + 10y =  - 54}

 \:  \:  \implies \displaystyle \tt{3 + 10y + 54 = 0}

 \:  \implies \displaystyle \tt{10y + 57 = 0}

 \:  \implies \displaystyle \tt{y =  \frac{ - 57}{10}  }

______________________________________

Q2)Compare the Quadratic equation (x-5)(x+7)=0 to the general form and write values of a and c.

 \:  \:  \divideontimes \underline{ \boxed{ \bf \: solution \to}}

 \:  \:  \implies \displaystyle \tt{(x - 5)(x + 7) = 0}

 \:  \implies \displaystyle \tt{(x(x + 7) - 5(x  + 7)) = 0}

 \:  \implies \displaystyle \tt{ {x}^{2}  + 7x - 5x - 35 = 0}

 \:  \implies \displaystyle \tt{ {x}^{2}  + 2x - 35 = 0}

 \:   \\ \dashrightarrow   \underline{\bf{comparing \: this\: quadratic \: equation \: with \: a {x}^{2}  + bx + c = 0}}

 \:  \: \\   \implies \displaystyle \tt{a = 1 \: and \: c =  - 35 \: is \: the \: answer}

 \:   \bigstar\boxed{ \bf{a = 1 \: and \: c =  - 35 \: is \: the \: value \: }}

______________________________________

Q3) In the Ap, -34,-27,-20,-13,-6.............

,Find the common difference and the value of t4

 \:  \:  \underline{ \boxed{ \bf{solution \to}}}

\implies\displaystyle\tt{-34,-27,-20,-13,-6 \: are \: the \: series \: of \: Ap}

 \:  \\   \implies \displaystyle \tt{ \:  - common \: difference (d)=  - 27 - ( - 34)}

 \:  \\  \implies \displaystyle \tt{common \: difference(d) =  - 27 + 34}

 \:  \\  \implies \displaystyle \tt{common \: difference(d) = 7}

 \:  \boxed{ \divideontimes { \displaystyle \tt{ \color{lime} \: common \: difference \: (d) = 7}}}

\displaystyle\bf{To\: Find\to\: The \: value \: of \: t_4}

\large\underline{\sf{Given\checkmark}}

\bullet \bf{a=-34 \: and \: d=7 }

\implies\displaystyle\tt{tn=a+(n-1)d}

\implies\displaystyle\tt{t_4=-34+(4-1)\times7}

\implies\displaystyle\tt{t_4=-34+3\times7}

\implies\displaystyle\tt{t_4=-34+21}

\implies\displaystyle\tt{t_4=-13}

\divideontimes\underline{\boxed{\displaystyle\bf{\color{red} \: the \: value \: of \: t_4 \: is \: -13}}}

Similar questions