Math, asked by xettridheeraj111, 10 months ago

Plz try solving it by simple radical equation​

Attachments:

Answers

Answered by BrainlyTornado
4

QUESTION

 \dfrac{ \sqrt{x}  +  \sqrt{a} }{ \sqrt{x}  -  \sqrt{a} }  -  \dfrac{ \sqrt{x}   -   \sqrt{a} }{ \sqrt{x}   +  \sqrt{a} }  = 2 \sqrt{3}

ANSWER:

\sqrt{3} (x - a) - 2 \sqrt{ax}= 0

GIVEN:

 \dfrac{ \sqrt{x}  +  \sqrt{a} }{ \sqrt{x}  -  \sqrt{a} }  -  \dfrac{ \sqrt{x}   -   \sqrt{a} }{ \sqrt{x}   +  \sqrt{a} }  = 2 \sqrt{3}

TO SIMPLIFY:

\dfrac{ \sqrt{x}  +  \sqrt{a} }{ \sqrt{x}  -  \sqrt{a} }  -  \dfrac{ \sqrt{x}   -   \sqrt{a} }{ \sqrt{x}   +  \sqrt{a} }  = 2 \sqrt{3}

EXPLANATION:

BY CROSS MULTIPLICATION:

\dfrac{ \sqrt{x}  +  \sqrt{a} }{ \sqrt{x}  -  \sqrt{a} }  -  \dfrac{ \sqrt{x}   -   \sqrt{a} }{ \sqrt{x}   +  \sqrt{a} }  = 2 \sqrt{3}

Cross multiply the numerator and denominator

\dfrac{ (\sqrt{x}  +  \sqrt{a}) ^{2}  -  (\sqrt{x}   -   \sqrt{a})^{2}  }{ (\sqrt{x}   -   \sqrt{a} )(\sqrt{x}   +    \sqrt{a})} = 2 \sqrt{3}

(A + B)^2 = A^2 + B^2 + 2 AB

(A  -  B)^2 = A^2 + B^2  -  2 AB

(A + B) (A  -  B) = A^2  - B^2

(\sqrt{x}  +  \sqrt{a}) ^{2} = ( { \sqrt{x} )}^{2}  + ( { \sqrt{a} )}^{2}  + 2 \sqrt{x}  \sqrt{a}

(\sqrt{x}  +  \sqrt{a}) ^{2} =x + a+ 2 \sqrt{ax}

(\sqrt{x}   -   \sqrt{a}) ^{2} = ( { \sqrt{x} )}^{2}  + ( { \sqrt{a} )}^{2}   - 2 \sqrt{x}  \sqrt{a}

(\sqrt{x}   -   \sqrt{a}) ^{2} =x + a -  2 \sqrt{ax}

 (\sqrt{x}   -   \sqrt{a} )(\sqrt{x}   +    \sqrt{a}) = ( { \sqrt{x} )}^{2}  - ( { \sqrt{a} )}^{2}

 (\sqrt{x}   -   \sqrt{a} )(\sqrt{x}   +    \sqrt{a}) = x - a

Substituting these values, we will get

\dfrac{ x + a  +   2 \sqrt{ax} - x  -  a  +   2 \sqrt{ax}  }{x - a} = 2 \sqrt{3}

\dfrac{ 4 \sqrt{ax}  }{x - a} = 2 \sqrt{3}

 2 \sqrt{ax}=  \sqrt{3} (x - a)

\sqrt{3} (x - a) - 2 \sqrt{ax}= 0

BY RATIONALIZING METHOD:

\dfrac{ \sqrt{x}  +  \sqrt{a} }{ \sqrt{x}  -  \sqrt{a} }  -  \dfrac{ \sqrt{x}   -   \sqrt{a} }{ \sqrt{x}   +  \sqrt{a} }  = 2 \sqrt{3}

Take  \:  \: \dfrac{ \sqrt{x}  +  \sqrt{a} }{ \sqrt{x}  -  \sqrt{a} }

Multiply by √x + √a on both numerator and denominator.

\dfrac{ \sqrt{x}  +  \sqrt{a} }{ \sqrt{x}  -  \sqrt{a} } \times \dfrac{ \sqrt{x}  +  \sqrt{a} }{ \sqrt{x}   +   \sqrt{a} }

 \dfrac{ (\sqrt{x}  +  \sqrt{a}) ^{2}  }{ (\sqrt{x})^{2}   -  (\sqrt{a}) ^{2}  }

 \dfrac{ ( { \sqrt{x} )}^{2}  + ( { \sqrt{a} )}^{2}    + 2 \sqrt{x}  \sqrt{a}  }{ x - a }

 \dfrac{x + a  +  2 \sqrt{xa}  }{ x - a }

Take  \:  \:  - \dfrac{ \sqrt{x}   -  \sqrt{a} }{ \sqrt{x}   +   \sqrt{a} }

Multiply by √x - √a on both numerator and denominator.

- \dfrac{ \sqrt{x}   -  \sqrt{a} }{ \sqrt{x}   +   \sqrt{a} }  \times \dfrac{ \sqrt{x}   -  \sqrt{a} }{ \sqrt{x}    -    \sqrt{a} }

  - \dfrac{ (\sqrt{x}   -  \sqrt{a}) ^{2}  }{ (\sqrt{x})^{2}   -  (\sqrt{a}) ^{2}  }

 -  \dfrac{ ( { \sqrt{x} )}^{2}  + ( { \sqrt{a} )}^{2}     - 2 \sqrt{x}  \sqrt{a}  }{ x - a }

 \dfrac{ - x  -  a   +   2 \sqrt{xa}  }{ x - a }

Add the two terms and equate to 23.

\dfrac{ x + a  +   2 \sqrt{ax} - x  -  a  +   2 \sqrt{ax}  }{x - a} = 2 \sqrt{3}

\dfrac{ 4 \sqrt{ax}  }{x - a} = 2 \sqrt{3}

 2 \sqrt{ax}=  \sqrt{3} (x - a)

\sqrt{3} (x - a) - 2 \sqrt{ax}= 0

Answered by BrainlyEmpire
51

=\color{orange} {} see .the. attachment

=\frac{2t²+dt²}{a-t²}=\color{yellow} {} Answer

=\color{green} {} Hope.it .helps

Attachments:
Similar questions