Math, asked by himeshmalviya, 1 month ago

Plz try to solve this my brain is very tried to solve this question I hope You will do it plz plz solve this by only cross multiplication method class 10th chapter 3rd.
I will marked you brainlist plz plz plz solve this ​

Attachments:

Answers

Answered by Anonymous
2

 \frac{1}{3x + y}  +  \frac{1}{3x - y}  =  \frac{3}{4}

 \small{\frac{1}{3x+y}(3x+y)+\frac{1}{3x-y}(3x+y)=\frac{3}{4}(3x + y)}

1+\frac{1}{3x-y}(3x+y)=\frac{3}{4}(3x+y)

1+\frac{3x+y}{3x-y}=\frac{3}{4}(3x+y)

1+\frac{3x+y}{3x-y}=\frac{3(3x+y)}{4}

4+\frac{4(3x+y)}{3x-y}=3(3x+y)

4+\frac{4(3x+y)}{3x-y}=9x+3y

\frac{4(3x+y)}{3x-y}=9x+3y-4

4(3x+y)=(9x+3y−4)(3x−y)

12x+4y=27{x}^{2}-9xy+9yx-3{y}^{2}-12x+4y

12x+4y=27{x}^{2}-3{y}^{2}-12x+4y

12x=27{x}^{2}-3{y}^{2}-12x

12x-27{x}^{2}+3{y}^{2}+12x=0

24x-27{x}^{2}+3{y}^{2}=0

x=\frac{-24+6\sqrt{16+9{y}^{2}}}{-54},\frac{-24-6\sqrt{16+9{y}^{2}}}{-54}

x=\frac{4-\sqrt{16+9{y}^{2}}}{9},\frac{4+\sqrt{16+9{y}^{2}}}{9}

Similar questions