Math, asked by vaishnupatil1708, 3 months ago

plz try to solve this question if u r genius smart question 8​

Attachments:

Answers

Answered by nirmalasorathiya657
1

Step-by-step explanation:

please mark me as BRAINLIEST

Attachments:
Answered by MissSolitary
1

 \:  \:  \longrightarrow{ \underline{{ \huge{ \tt{ A}}} \tt{NSWER :-}}}

-------------------

 { \mathrm{ \longrightarrow {sin}^{2}30 \degree \:  {cos}^{2}45\degree  + 4 \:  {tan}^{2}30 \degree +  \dfrac{1}{2} {sin}^{2} 90\degree - 2 \:  {cos}^{2} 90\degree +  \dfrac{1}{24} {cos}^{2}0  \degree}}

{ \mathrm{  :  \longrightarrow{( { \dfrac{1}{2}) }^{2} }. \: ( { \dfrac{1}{ \sqrt{2} }) }^{2} + 4 \: ( { \dfrac{1}{ \sqrt{3} }) }^{2} +  \dfrac{1}{2} \: ( {1)}^{2} -  2 \: ( {0)}^{2} +  \dfrac{1}{24} \: ( {1)}^{2}   }}

We know that,

√a × √a = a

 { \mathrm{  :  \longrightarrow{ \dfrac{1}{4} \times  \dfrac{1}{2} + 4 \times  \frac{1}{3} +  \frac{1}{2} \times 1 - 2 \times 0 +  \frac{1}{24}  \times 1    }}} \\

{ \mathrm{  :  \longrightarrow{ \frac{1}{8}  +  \frac{4}{3}  +  \frac{1}{2}  - 0 +  \frac{1}{24}   }}} \\

{ \mathrm{  :  \longrightarrow{ \frac{1}{8} +  \frac{4}{3}  +  \frac{1}{2}   +  \frac{1}{24}  }}} \\

Now take the L.C.M,

=> 24

{ \mathrm{  :  \longrightarrow{ \frac{3 +8 + 12 + 1}{24}  }}} \\

{ \mathrm{  :  \longrightarrow{ \frac{ \cancel{24}}{ \cancel{24}}  }}} \\

{ \mathrm{  :  \longrightarrow{ 1 \:  \:  \: ...(ans)}}}

-------------------

Note :- For solving these types of sums, you just need to put the values of the given angles and simplify it further.

-------------------

Similar questions