Math, asked by ArunSharma7, 6 months ago

plz write correct answer i will mark as brainliest ​

Attachments:

Answers

Answered by Anonymous
24

 \red{\Huge{\underline{\underline{ \rm{Solution }}}}}

 \tt{x =   \dfrac{ {27}^{3n - 1} . \:  {243}^{ \frac{ - 4n}{5} }}{ {9}^{n + 1}.  \: {3}^{3n - 5}  }  }

We know

◔ 27 = 3 × 3 × 3 = 3³

◔ 243 = 3 × 3 × 3 × 3 ×3 = 3⁵

◔ 9 = 3 × 3 = 3²

Put the values, we have:

{ \tt{x =  \dfrac{ ({ {3}^{3}) }^{3n - 1}.  \: {( {3}^{5}) }^{ \frac{ - 4n}{5} } }{ {({3}^{2}) }^{n + 1} .  \: {3}^{3n - 5} } }}

 \tt =  \dfrac{ {3}^{9n - 3} \times  \:  {3}^{ - 4n}  }{ {3}^{2n + 2} \times  \:  {3}^{3n - 5}  }

When the bases are same with multiplication sign between, then powers or exponents are added, so we have:

 \tt =  \dfrac{ {3}^{9n - 3 + ( - 4)} }{ {3}^{2n + 2 + (3n - 5)} }

 \tt =  \dfrac{ {3}^{9n - 3 - 4n} }{ {3}^{2n + 2 + 3n - 5} }

 \tt =  \dfrac{  {3}^{5n - 3} }{ {3}^{5n - 3} }

On further solving and cancelling it, we have:

 \tt = 1

Answer :-

 \green{ \therefore{ \underline{ \boxed{ \tt{x = 1}}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by InfiniteSoul
20

\sf{\huge{\underline{\boxed{\green{\bold{Solution}}}}}}

⠀⠀⠀⠀

: \sf\implies \: {\bold{ \dfrac{ 27^{3n-1} . 243^{\frac{- 4n}{5}}}{ 9^{n+1} . 3^{3n-5}}}}

⠀⠀⠀⠀

  • We will find the factors of each term .

27 = 3 x 3 x 3

243 = 3 x 3 x 3 x 3 x 3

9 = 3 x 3

⠀⠀⠀⠀

: \sf\implies \: {\bold{ \dfrac{ 3^{3( 3n-1 ) } . 3^{5 \times \frac{- 4n}{5}}}{ 3^{2 ( n+1 ) } . 3^{3n-5}}}}

⠀⠀⠀⠀

: \sf\implies \: {\bold{ \dfrac{ 3^{9n-3} . 3^{{4n}}}{ 3^{2n+2} . 3^{3n-5}}}}

⠀⠀⠀⠀

  • When the bases are same in multiplication powers will add

⠀⠀⠀⠀

: \sf\implies \: {\bold{ \dfrac{ 3^{ 9n -3 - 4n}}{3^{2n + 2 + 3n - 5}}}}

⠀⠀

: \sf\implies \: {\bold{\dfrac{ 3^{5n - 3 }} { 3^{5n  - 3 }}}}

⠀⠀⠀⠀

  • When the bases are same in division the powers will subtract

⠀⠀

:\sf\implies \: {\bold{ 3^{ 5n - 3 - 5n + 3 }}}

⠀⠀

:\sf\implies \: {\bold{ 3^{ 0 }}}

⠀⠀⠀⠀

  • \sf{\bold{ a^0 = 1 }}

⠀⠀⠀⠀

:\sf\implies \: {\bold{ 1 }}

⠀⠀⠀⠀

⠀⠀

\sf{{\underline{\boxed{\blue{{\bold{ \dfrac{ 27^{3n-1} . 243^{\frac{- 4n}{5}}}{ 9^{n+1} . 3^{3n-5}}}} = 0 }}}}}

⠀⠀⠀⠀

⠀⠀⠀⠀

Similar questions