Math, asked by mishrasourav2707, 11 months ago

plzxz solve this .....................​

Attachments:

Answers

Answered by Sharad001
8

Question :-

Integrate it -

 \longmapsto \:  \int \sf \frac{ {x}^{9} }{ {(4 {x}^{2}  + 1)}^{6} }  \\

Answer :-

\to \boxed{ \sf \:  \frac{1}{10 {(4 +  \frac{1}{ {x}^{2} }) }^{5} }  + c \: } \\  \\ or \:  \\  \to  \boxed{\sf \:  \frac{ {x}^{10} }{10 {(4 {x}^{2} + 1) }^{5} }  \:  + c \: }m

Solution :-

We have ,

 \to \:  \int \sf \frac{ {x}^{9} }{ {(4 {x}^{2}  + 1)}^{6} }  \\  \:  \\ \sf taking \: common \:  {x}^{2}  \: in \: denomenator \\  \\  \to \:  \int \sf \frac{ {x}^{9} }{ {  \big \{{x}^{2} (4   +  \frac{1}{ {x}^{2} } ) \big \}}^{6} }  \\  \:  \\  \\  \to \:  \int \sf \frac{ {x}^{9} }{ { {x}^{12} (4   +  \frac{1}{ {x}^{2} } )}^{6} }  \\  \:  \\  \to \: \int \sf \frac{ 1 }{ { {x}^{3} (4   +  \frac{1}{ {x}^{2} } )}^{6} } \:  \\  \\  \sf \: let \:  \: 4 +  \frac{1}{ {x}^{2} }  = t \\  \\  \to \sf \:  4 +  {x}^{ - 2}  = t \\  \\ \sf differentiate \: with \: respect \: to \: x \\  \\  \to \sf 0  - 2 {x}^{ - 2 - 1}   =  \frac{dx}{dt}  \\  \\  \to \sf \frac{ - 2}{ {x}^{3} }  \: dx = dt \\  \: \\  \to \sf \frac{1}{ {x}^{3} } dx =  \frac{ - 1}{2} dt \\  \\ \therefore \\  \\  \to \sf \frac{ - 1}{2}  \: \int \:  \frac{1}{ {t}^{6} }  \: dt \\  \\  \to \sf \:   \frac{ - 1}{2}  \:  \int {t}^{ - 6}  \: dt \\  \\  \because \sf \:   \int \:  {x}^{n} dx \:  =  \frac{ {x}^{n + 1} }{n + 1}  \:  + c \: (constant \: )

 \therefore \:  \\  \to \sf \:  \frac{ - 1}{2}  \bigg(  \frac{ {t}^{ - 6 + 1} }{ - 6 + 1}  \bigg) + c \:  \\  \\  \to \sf \:   \frac{ - 1}{2} \bigg( \frac{ {t}^{ - 5} }{ - 5}  \bigg) \:  + c \\  \\  \to \sf \:  \frac{1}{10  \: {t}^{5} }  \:  + c \\  \\  \sf \: now \: put \: t \:  = 4 +  \frac{1}{ {x}^{2} }  \: from \: eq.(1) \\  \\  \to \boxed{ \sf \:  \frac{1}{10 {(4 +  \frac{1}{ {x}^{2} }) }^{5} }  + c \: } \\  \\ or \:  \\  \to  \boxed{\sf \:  \frac{ {x}^{10} }{10 {(4 {x}^{2} + 1) }^{5} }  \:  + c \: }

Similar questions