Math, asked by nallujeevani, 8 months ago

plzz ans it with step by step explanation​

Attachments:

Answers

Answered by XEVILX
4

Hey Pretty Stranger!

Here we're given with

  \sf \: \sin\theta +  \cosec \theta = 2

We can write it as

 \longrightarrow \sf \:  \sin \theta +  \dfrac{1}{ \sin \theta}  = 2

Squaring both the sides

 \longrightarrow \sf \:  (\sin \theta +  \dfrac{1}{ \sin \theta} ) ^{2}  =(  {2})^{2}

 \longrightarrow \sf \: {sin}^{2}  \theta+  \dfrac{1}{ {sin}^{2} \theta }  + 2( \sin  \theta)( \dfrac{1}{ \sin \theta} ) = 4

 \longrightarrow \sf \: {sin}^{2}  \theta+  \dfrac{1}{ {sin}^{2} \theta }    + 2 = 4

 \longrightarrow \sf \: {sin}^{2}  \theta+  \dfrac{1}{ {sin}^{2} \theta }     = 4 - 2

 \longrightarrow \sf \: {sin}^{2}  \theta+  \dfrac{1}{ {sin}^{2} \theta }     = 2

 \longrightarrow \sf \: {sin}^{2}  \theta+   \cosec^{2}    \theta   = 2

\therefore Option 3) is the required answer.

Similar questions