Math, asked by hasleenkaur, 1 year ago

plzz ans. this guys fast....plzz....fast....its really vry urgent .......

Attachments:

Answers

Answered by siddhartharao77
8

Given  :2^(n) - 2^(n - 1) = 4.

⇒ 2^n - 2^(-1) * 2^n

⇒ 2^n(1 - 2^-1) = 4

⇒ 2^n(1 - 1/2) = 4

⇒ 2^n(1/2) = 4

⇒ 2^n = 8

⇒ 2^n = 2^3

⇒ n = 3.


Therefore:

⇒ n^n

⇒ 3^3

⇒ 27.



Hope it helps!


hasleenkaur: thank u soo much my friend
siddhartharao77: Welcome
Anonymous: Amazing
siddhartharao77: thanks!
Answered by BloomingBud
9

 {(2)}^{n} - {(2)}^{n - 1} = 4 \\ \\ = > {(2)}^{n} - \frac{ {(2)}^{n} }{ {(2)}^{1} } = 4 \\ \\ = > {(2)}^{n} \times (1 - \frac{1}{2} ) = 4 \: \: \: \: \: \: (taking \: {(2)}^{n} as \: common) \\ \\ = > {(2)}^{n} \times ( \frac{2 - 1}{2} ) = 4 \\ \\ = > {(2)}^{n} \times \frac{1}{2} = 4 \\ \\ = > {(2)}^{n} = 4 \times \frac{2}{1} \\ \\ = > {(2)}^{n} = 8 \\ \\ = > {(2)}^{n} = {(2)}^{3} \: \\ \\ now \: same \: bases \: \\ equating \: their \: powers \\ \\ = > n = 3



The value of n = 3.



To be found :


 {(n)}^{n} = {(3)}^{3} = 3 \times 3 \times 3 = 27



Hence, the value of \ {(n)}^{n} is 27.

Similar questions