Math, asked by rajdeepppp, 1 year ago

Plzz answer fast..

If tan(A+B ) =√3 and
tan(A-B) = 1/√3 find A and B.

Answers

Answered by Anonymous
7

SOLUTION ☺️

QUES.=) If tan (A+B)= √3 and tan (A-B) = 1/√3, find A and B.

_____________________________

✳️tan(a+b) = √3

✳️tan(a-b)= 1/√3

We know tan 60 = √3 and tan 30 = 1/√3

So, a+b = 60, a-b = 30

Adding the two gives

=a+a+b-b=60+30

=2a=90

=a = 45

=a+b=60

=45+b=60

=b=15 ans.

hope it helps


xishitaghoshx: Why'd you follow me dude?
xishitaghoshx: Hate me right?
xishitaghoshx: what?
Answered by BraɪnlyRoмan
44

\huge \boxed{ \underline{ \underline{ \bf{Answer}}}}

  \implies \:  \: tan \: (A + B) =  \sqrt{3}

We know, tan 60° = √3, so we can write

  \implies \:  \: tan \: (A + B) =  tan \: 60 \degree

 \implies \: A + B \:  =  \: 60 \degree \:  \:  \: \rightarrow \: (1)

  \implies \:  \: tan \: (A  -  B) =   \frac{1}{ \sqrt{3} }

We know, tan 30° = 1/√3, so we can write

  \implies \:  \: tan \: (A  -  B) =  tan \: 30 \degree

 \implies \: A  -  B \:  =  \: 30 \degree \:  \:  \: \rightarrow \: (2)

Now, Adding (1) and (2), we get

=> A + B + A - B = 60° + 30°

=> 2A = 90°

=> A = 45°

and,

=> A + B = 60°

=> 45° + B = 60°

=> B = 60° - 45°

=> B = 15°

 \boxed{ \bf{Hence, \:  A = 45 \degree \:  and \:  B = 15 \degree}}

Similar questions