Math, asked by EnchantedGirl, 9 months ago

PLZZ. ANSWER THE QUESTION

JEE Main 2002

XX NO SPAMXX​

Attachments:

Answers

Answered by Anonymous
51

AnswEr :

Given Expression,

 \sf y = (x +  \sqrt{1 +  {x}^{2} } ) {}^{n}

Differentiating w.r.t x , we get :

 \implies \:  \sf  \dfrac{dy}{dx}  =  {n(x +  \sqrt{1 +  {x}^{2} }) }^{n - 1}  \times   \dfrac{d(x +  \sqrt{1 + x {}^{2} }) }{dx}  \\  \\  \implies \:  \sf \:  \dfrac{dy}{dx}  = {n(x +  \sqrt{1 +  {x}^{2} }) }^{n - 1} \times  \bigg(1 +  \dfrac{1}{2 \sqrt{ {x}^{2} + 1 }   }  \times  \frac{d( {x}^{2} )}{dx}  \bigg) \\  \\  \implies \:  \sf \dfrac{dy}{dx}  = {n(x +  \sqrt{1 +  {x}^{2} }) }^{n - 1} \times  \bigg(1 +  \dfrac{2x}{2 \sqrt{ {x}^{2} + 1 }   }   \bigg) \\  \\  \implies \sf \: \dfrac{dy}{dx}  = {n(x +  \sqrt{1 +  {x}^{2} }) }^{n - 1} \times  \bigg( \dfrac{x +  \sqrt{1 +  {x}^{2} } }{\sqrt{ {x}^{2} + 1 }   } \bigg) \\  \\  \implies \sf \:   \dfrac{dy}{dx}  =  \frac{n(x +  \sqrt{ {x}^{2} + 1}) {}^{n}  }{ \sqrt{1 +  {x}^{2} } } -  -  -  -  -  - (1)  \\  \\  \implies \:  \sf \: ( \sqrt{1 +  {x}^{2} } ) \dfrac{dy}{dx}  = ny

Again differentiating w.r.t x on both sides,

 \implies \sf \:  \cfrac{x}{ \sqrt{1 +  {x}^{2} } }  \dfrac{dy}{dx}  +  \sqrt{1 +  {x}^{2} }  \dfrac{ {d}^{2}y }{dx {}^{2} }  = n \times  \dfrac{dy}{dx}

Using equation (1),

 \implies \:  \sf \:  \dfrac{x \dfrac{dy}{dx}  + (1 +  {x}^{2} )  \dfrac{ {d}^{2} y}{ {dx}^{2} }  }{ \cancel{ \sqrt{1 +  {x}^{2}} } }  =  \dfrac{ {n}^{2} (x +  \sqrt{1 +  {x}^{2} } ) {}^{n} }{  \cancel{\sqrt{1 +  {x}^{2} } } } \\  \\   \implies \boxed{ \boxed{\sf \: x \dfrac{dy}{dx}  + (1 +  {x}^{2} )  \dfrac{ {d}^{2} y}{ {dx}^{2} } =   {n}^{2} y}}

Option (a) n²y is correct

Answered by FehlingSolution
35

Please refer to the attachment.

In case of query in the given solution, please let me know.

Attachments:
Similar questions