plzz answer this question: In how many ways can a collection of 30 books be divided into two groups of 10 and 20 so that the first group always contains a particular book. If anybody answer to this question I will mark it as brainliest answer
Answers
Step-by-step explanation:
explore the connection between these two essential topics.
Combinations
Note: The formulas in this lesson assume that we have no replacement, which means items cannot be repeated.
Combinations are a way to calculate the total outcomes of an event where order of the outcomes does not matter. To calculate combinations, we will use the formula nCr = n! / r! * (n - r)!, where n represents the total number of items, and r represents the number of items being chosen at a time.
To calculate a combination, you will need to calculate a factorial. A factorial is the product of all the positive integers equal to and less than your number. A factorial is written as the number followed by an exclamation point. For example, to write the factorial of 4, you would write 4!. To calculate the factorial of 4, you would multiply all of the positive integers equal to and less than 4. So, 4! = 4 * 3 * 2 * 1. By multiplying these numbers together, we can find that 4! = 24.
Let's look at another example of how we would write and solve the factorial of 9. The factorial of 9 would be written as 9!. To calculate 9!, we would multiply 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1, and that equals 362,880.