Physics, asked by kritika2664, 1 year ago

plzz answer this with explaination..... i will mark as brainliest.... ​

Attachments:

Answers

Answered by Anonymous
7

\huge\underline\blue{\sf Answer:}

\red{\boxed{\sf Instantaneous\:Power(P)=\frac{-V^2sin2 \omega t}{2L\omega} }}

\huge\underline\blue{\sf Solution:}

\large\underline\pink{\sf Given: }

  • V = \sf{V_osin\omega t}

\large\underline\pink{\sf To\:Find: }

  • Instantaneous Power (P) = ?

━━━━━━━━━━━━━━━━━━━━━━━━━

If \sf{\frac{dl}{dt}} is rate of change of current through inductor L.

Then ,

Induced emf is in the inductor of the same instant is :-

\large\implies{\sf \left(-L\frac{dI}{dt}\right)}

To maintain the flow of current we must apply voltage equal and opposite to the induced voltage .

therefore,

\large\implies{\sf V=-\left(-L\frac{dI}{dt}\right)}

Given :- V = \sf{V_osin \omega t}

\sf{V_osin \omega t= L\frac{dI}{dt}→(1)}

\large\implies{\sf \frac{dI}{dt}=\frac{V_o}{L}sin \omega t }

\large\implies{\sf I = -\frac{V_o}{L}\frac{cos \omega t}{\omega} →(2)}

\large{\boxed{\sf Instantaneous\:Power(P)=VI}}

\large\implies{\sf P=V_osin \omega t \left(-\frac{Vcos\omega t}{L\omega}\right) }

\large\implies{\sf P=\frac{V^2sin2\omega t}{2L\omega} }

Hence ,

\red{\boxed{\sf Instantaneous\:Power(P)=\frac{-V^2sin2 \omega t}{2L\omega} }}

Similar questions