Plzz do step solve please bhaio
Answers
Answer:
(a). y = -10x + 3 cosx ⇒ dy/dx = -10- 3sinx
(b). y = 3/x +5sinx ⇒ dy/dx = -3x^(-2) + 5cosx
(c). y = cosec - 4x + 7 ⇒ dy/dx = -csc x cot x - 2x^(-1/2 )
(e). dy/dx = cosx secx + sinx sec x tan x - sinx secx + cosx secx tanx
Explanation:
(a). y = -10x + 3 cosx
Taking derivative with respect to "x"
dy/dx = d(- 10x + 3cosx)/dx
dy/dx = - 10 - 3sinx
(b). y = 3/x + 5sinx
Taking derivative with respect to "x"
dy/dx = d( 3/x +5sinx )/dx
dy/dx = d(3x^(-1) + 5sinx) /dx
dy/dx = -3x^(-2) + 5cosx
dy/dx = -3x^(-2) + 5cosx
(c). y = cosecx - 4x + 7
Taking derivative with respect to "x"
dy/dx = d(cosecx - 4√x + 7) /dx
dy/dx = d( cosecx - 4x^(1/2) + 7 )/dx
dy/dx = -cscx cot x - (1/2)×4x^(-1/2) + 0 ∵ ( 7 constant so equal to 0)
dy/dx = -csc x cot x - 2x^(-1/2 )
(e). y = ( sinx + cosx) secx
Taking derivative with respect to "x"
dy/dx = d( sinx secx + cosx secx ) /dx
Using product rule we get
dy/dx = cosx secx + sinx sec x tan x + (-sinx secx + cosx secx tanx )
dy/dx = cosx secx + sinx sec x tan x - sinx secx + cosx secx tanx
Other parts are similarly so try to do yourself