Physics, asked by Anonymous, 11 months ago

plzz don't Only write the key explain with ur explanation....
I too knw the key I need explanation....​

Attachments:

Answers

Answered by Anonymous
4

❏ Question:-

@ Gravitational Field potential in a region is given by V=-(x+y+z) , find the gravitational intensity at (2,2,2).

❏ Solution:-

✏ Given:-

  • V= -(x+y+z)
  • the point is (2,2,2)

✏ To Find:-

  • E = ?

✏ We know that :-

if , V be the gravitational potential and \vec{ E } be the gravitational field intensity and \vec{r } be the position vector then ;

\boxed{\large{\sf dV= -\vec{E}.d\vec{r}}}

\sf\implies  dV= -\vec{E}.d\vec{r}

\sf\implies \vec{E}=-\frac{dV}{d\vec{r}}

\sf\implies E_x\hat{\imath}+E_y\hat{\jmath}+E_z\hat{k}=-(\frac{dV_x}{dx}\hat{\imath}+\frac{dV_y}{dy}\hat{\jmath}+(\frac{dV_z}{dz}\hat{k})

Hence ,

\blacksquare\:\:\:\: E_x=-\frac{dV_x}{dx}

\blacksquare\:\:\:\: E_y=-\frac{dV_y}

\blacksquare\:\:\:\: E_z=-\frac{dV_z}{dz}

Therefore

\blacksquare\:\:\:\: E_x=-\frac{d(-x)}{dx}

\longrightarrow\:\:\:\: E_x=1

\blacksquare\:\:\:\: E_y=-\frac{d(-y)}{dy}

\longrightarrow\:\:\:\: E_y=1

\blacksquare\:\:\:\: E_z=-\frac{d(-z)}{dz}

\longrightarrow\:\:\:\: E_z=1

Hence ,

\implies \vec{E}= E_x\hat{\imath}+E_y\hat{\jmath}+E_z\hat{k}

\sf\implies \boxed{\vec{E}= \hat{\imath}+\hat{\jmath}+\hat{k}}_{\text{  at (2,2,2)}}

Similar questions