Math, asked by spam87, 4 months ago

plzz dont spam..... ​

Attachments:

Answers

Answered by MRDEMANDING
3

Given :-

  • A trapezium whose area is 105cm square and bases are 14cm and 7cm.

To find :-

  • Altitude of trapezium

Solution :-

  • Area of trapezium = 105 cm²

  • Bases of trapezium = 14cm and 7cm

As we know that

  • → Area of trapezium = ½ (a + b) × h

  • Where " (a + b) " is sum of parallel sides and " h " is Altitude.

According to the question;

→ Bases of trapezium = parallel sides

→ Area of trapezium = 105 cm²

→ ½ (a + b) × h = 105

→ ½ (14 + 7) × h = 105

→ ½ × 21 × h = 105

→ 21/2 × h = 105

→ h = 105 × 2/21

→ h = 10 cm

Therefore,

  • Height of trapezium is 10cm

☢ More to know ☢

  • Area of circle = πr²

  • Circumference of circle = 2πr

  • Perimeter of rectangle =2(l + b)

  • Perimeter of square = 4 × side

  • Area of square = side × side

  • Area of rhombus = ½ × product of diagonals

Area of Parallelogram = base × height

Answered by AestheticSky
2

Given:-

  • Area of trapezium = 105cm²
  • base = 14cm and 7cm

To find:-

  • altitude of this trapezium

Formula to be used:-

\underline{\boxed{\sf area\: of \: trapezium =\dfrac{1}{2} × (sum\: of \: parallel\:  sides)×h }}

Solution:-

\longrightarrow \bf 105 = \dfrac{1}{2} × (14+7) × h

\longrightarrow \bf 210 = 21×h

\longrightarrow \bf h = 10cm

hence, the altitude of this trapezium is 10cm

Extra information:-

  • Area of rectangle :-

\longrightarrow \underline{\boxed{\sf area\: of \: rectangle = 2 × (length + breadth)}}

  • Area of parallelogram:-

\longrightarrow \underline{\boxed{\sf area\: of \: parallelogram = base×height }}

  • area of square :-

\longrightarrow \underline{\boxed{\sf area\: of \: square = side² }}

  • area of triangle :-

\longrightarrow \underline{\boxed{\sf area\: of \: triangle =\dfrac{1}{2} × base × height  }}

  • Area of rhombus:-

\longrightarrow \underline{\boxed{\sf area\: of \: rhombus =\dfrac{1}{2} × (product\: of \: diagonals)}}

Similar questions