plzz fast answer it
....
....
..... no spam okk
Attachments:
Answers
Answered by
3
heya..
HCF of 126 and 35 :-
Prime Factors of 35 = 5 × 7
Prime factors of 126 = 2 × 3 × 3 × 7
∴ common factors = 7
∴ HCF = common factors = 7
Now, A/C to question,
HCF = 126A + 35B = 7
⇒18 × 7A + 5 × 7B = 7
⇒ 18A + 5B = 1 , here many solutions possible because given one equation and two variables.
Let A = 2 and B = -7 then, 18 × 2 - 5 × 7 = 1
So, A = 2 and B = -7 is A solution of this equation .
Now, LHS = A.B/H
PUT A = 2 , B = -7 and H = 7
Then, A.B/H = 2 × -7/7 = -2 = RHS
Hence , proved//
tysm......#gozmit
HCF of 126 and 35 :-
Prime Factors of 35 = 5 × 7
Prime factors of 126 = 2 × 3 × 3 × 7
∴ common factors = 7
∴ HCF = common factors = 7
Now, A/C to question,
HCF = 126A + 35B = 7
⇒18 × 7A + 5 × 7B = 7
⇒ 18A + 5B = 1 , here many solutions possible because given one equation and two variables.
Let A = 2 and B = -7 then, 18 × 2 - 5 × 7 = 1
So, A = 2 and B = -7 is A solution of this equation .
Now, LHS = A.B/H
PUT A = 2 , B = -7 and H = 7
Then, A.B/H = 2 × -7/7 = -2 = RHS
Hence , proved//
tysm......#gozmit
Answered by
1
===================
Let a = 126 and b = 35.
Using Euclid's Division Lemma,
First step:
⇒ 126 = 35 × 3 + 21
Second step :
⇒ 35 = 21 × 1 + 14
Third step :
⇒ 21 = 14 × 1 + 7
Forth step :
⇒ 14 = 7 × 2 + 0
So, H.C.F is 7.
Therefore H=7.
Now,
⇒ 7 = ( 21 - 14 × 1 ) Third step
⇒ 7 = { 21 - ( 35 - 21 × 1 ) × 1 } Second step
⇒ 7 = { 21 - 35 × 1 + 21 × 1 }
⇒ 7 = ( 21 - 35 + 21 × 1 )
⇒ 7 = ( 21 + 21 × 1 - 35 )
⇒ 7 = { 21 ( 1 + 1 ) - 35 }
⇒ 7 = ( 21 × 2 - 35 )
⇒ 7 = [ ( 126 - 35 × 3 )2 - 35 ] First step
⇒ 7 = [ 126 × 2 - 35 × 3 × 2 - 35 ]
⇒ 7 = [ 126 × 2 - 35 × 6 - 35 ]
⇒ 7 = [ 126 × 2 - 35 ( 6 + 1 ) ]
⇒ 7 = [ 126 × 2 - 35 × 7 ]
Here 7 is H.C.F ( H ) so,
⇒ H = 126 × 2 - 35 × 7
And it is given that H = 126 × A + 35 × B.
∴ 126 × 2 - 35 × 7 = 126 × A + 35 × B
By comparing coefficients :
A = 2 and B = -7.
Now,
⇒ ( A × B ) ÷ H = -2
By substituting the values of H,A and B.
⇒ ( 2 × -7 ) ÷ 7 = -2
⇒ ( -14 ) ÷ 7 = -2
∴ -2 = -2.
Proved .
Hope it helps !
Let a = 126 and b = 35.
Using Euclid's Division Lemma,
First step:
⇒ 126 = 35 × 3 + 21
Second step :
⇒ 35 = 21 × 1 + 14
Third step :
⇒ 21 = 14 × 1 + 7
Forth step :
⇒ 14 = 7 × 2 + 0
So, H.C.F is 7.
Therefore H=7.
Now,
⇒ 7 = ( 21 - 14 × 1 ) Third step
⇒ 7 = { 21 - ( 35 - 21 × 1 ) × 1 } Second step
⇒ 7 = { 21 - 35 × 1 + 21 × 1 }
⇒ 7 = ( 21 - 35 + 21 × 1 )
⇒ 7 = ( 21 + 21 × 1 - 35 )
⇒ 7 = { 21 ( 1 + 1 ) - 35 }
⇒ 7 = ( 21 × 2 - 35 )
⇒ 7 = [ ( 126 - 35 × 3 )2 - 35 ] First step
⇒ 7 = [ 126 × 2 - 35 × 3 × 2 - 35 ]
⇒ 7 = [ 126 × 2 - 35 × 6 - 35 ]
⇒ 7 = [ 126 × 2 - 35 ( 6 + 1 ) ]
⇒ 7 = [ 126 × 2 - 35 × 7 ]
Here 7 is H.C.F ( H ) so,
⇒ H = 126 × 2 - 35 × 7
And it is given that H = 126 × A + 35 × B.
∴ 126 × 2 - 35 × 7 = 126 × A + 35 × B
By comparing coefficients :
A = 2 and B = -7.
Now,
⇒ ( A × B ) ÷ H = -2
By substituting the values of H,A and B.
⇒ ( 2 × -7 ) ÷ 7 = -2
⇒ ( -14 ) ÷ 7 = -2
∴ -2 = -2.
Proved .
Hope it helps !
Similar questions
India Languages,
8 months ago
English,
8 months ago
Math,
8 months ago
Hindi,
1 year ago
History,
1 year ago
World Languages,
1 year ago