plzz find the value of x
Attachments:
![](https://hi-static.z-dn.net/files/d19/3d2163d66aa1891932a45a2346ddb159.jpg)
Answers
Answered by
1
hey mate
refer to attachment
refer to attachment
Attachments:
![](https://hi-static.z-dn.net/files/d4d/10a41ecb4185ed15bdcee7a249636be5.jpg)
arsh77777:
thnku
Answered by
1
Hi there!
Here's the answer:
•°•°•°•°<><><<><>><><>•°•°•°•°•
Given,
![sin^{-1}(1-x) - 2sin^{-1}x = \frac{\pi}{2} sin^{-1}(1-x) - 2sin^{-1}x = \frac{\pi}{2}](https://tex.z-dn.net/?f=sin%5E%7B-1%7D%281-x%29+-+2sin%5E%7B-1%7Dx+%3D+%5Cfrac%7B%5Cpi%7D%7B2%7D)
=>![sin^{-1}(1-x) = \frac{\pi}{2} + 2sin^{-1}x sin^{-1}(1-x) = \frac{\pi}{2} + 2sin^{-1}x](https://tex.z-dn.net/?f=sin%5E%7B-1%7D%281-x%29+%3D+%5Cfrac%7B%5Cpi%7D%7B2%7D+%2B+2sin%5E%7B-1%7Dx+)
=>![(1-x) = sin(\frac{\pi}{2} + 2sin^{-1}x) (1-x) = sin(\frac{\pi}{2} + 2sin^{-1}x)](https://tex.z-dn.net/?f=%281-x%29+%3D+sin%28%5Cfrac%7B%5Cpi%7D%7B2%7D+%2B+2sin%5E%7B-1%7Dx%29+)
=>![(1-x) = cos(2sin^{-1}x) (1-x) = cos(2sin^{-1}x)](https://tex.z-dn.net/?f=%281-x%29+%3D+cos%282sin%5E%7B-1%7Dx%29)
=>![(1-x) = cos[cos^{-1}(1-2x^{2})] (1-x) = cos[cos^{-1}(1-2x^{2})]](https://tex.z-dn.net/?f=%281-x%29+%3D+cos%5Bcos%5E%7B-1%7D%281-2x%5E%7B2%7D%29%5D)
=>![(1-x) = 1 - 2x^{2} (1-x) = 1 - 2x^{2}](https://tex.z-dn.net/?f=%281-x%29+%3D+1+-+2x%5E%7B2%7D)
=>![2x^{2}-x = 0 2x^{2}-x = 0](https://tex.z-dn.net/?f=2x%5E%7B2%7D-x+%3D+0)
=>![x(2x-1) = 0 x(2x-1) = 0](https://tex.z-dn.net/?f=x%282x-1%29+%3D+0)
=> x = 0 or x =![\frac{1}{2} \frac{1}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D)
• Check if x=
satisfies the equation
LHS =
=![sin^{-1}(1-x) - 2sin^{-1}x sin^{-1}(1-x) - 2sin^{-1}x](https://tex.z-dn.net/?f=sin%5E%7B-1%7D%281-x%29+-+2sin%5E%7B-1%7Dx)
=![sin^{-1}(1-\frac{1}{2}) - 2sin^{-1}(\frac{1}{2}) sin^{-1}(1-\frac{1}{2}) - 2sin^{-1}(\frac{1}{2})](https://tex.z-dn.net/?f=sin%5E%7B-1%7D%281-%5Cfrac%7B1%7D%7B2%7D%29+-+2sin%5E%7B-1%7D%28%5Cfrac%7B1%7D%7B2%7D%29+)
=![-sin^{-1}(\frac{1}{2}) -sin^{-1}(\frac{1}{2})](https://tex.z-dn.net/?f=+-sin%5E%7B-1%7D%28%5Cfrac%7B1%7D%7B2%7D%29)
=![- \frac{\pi}{6} - \frac{\pi}{6}](https://tex.z-dn.net/?f=+-+%5Cfrac%7B%5Cpi%7D%7B6%7D)
=/= RHS
• Check if x= 0 satisfies the equation
LHS =
=![sin^{-1}(1-x) - 2sin^{-1}x sin^{-1}(1-x) - 2sin^{-1}x](https://tex.z-dn.net/?f=sin%5E%7B-1%7D%281-x%29+-+2sin%5E%7B-1%7Dx)
=![sin^{-1}(1-0) - 2sin^{-1}(0) sin^{-1}(1-0) - 2sin^{-1}(0)](https://tex.z-dn.net/?f=sin%5E%7B-1%7D%281-0%29+-+2sin%5E%7B-1%7D%280%29+)
=![\frac{\pi}{2} - 0 \frac{\pi}{2} - 0](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cpi%7D%7B2%7D+-+0)
=![\frac{\pi}{2} \frac{\pi}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cpi%7D%7B2%7D)
= RHS
•°• x = 0 is the required solution
•°•°•°•°<><><<><>><><>•°•°•°•°•
Here's the answer:
•°•°•°•°<><><<><>><><>•°•°•°•°•
Given,
=>
=>
=>
=>
=>
=>
=>
=> x = 0 or x =
• Check if x=
LHS =
=
=
=
=
=/= RHS
• Check if x= 0 satisfies the equation
LHS =
=
=
=
=
= RHS
•°• x = 0 is the required solution
•°•°•°•°<><><<><>><><>•°•°•°•°•
Similar questions
CBSE BOARD XII,
8 months ago
Political Science,
1 year ago
World Languages,
1 year ago
Physics,
1 year ago