Math, asked by sugarcandy1536, 9 months ago

plzz give the correct ans...only if u r sure..u can take your time but ans should b correct​

Attachments:

Answers

Answered by saounksh
0

ᴀɴsᴡᴇʀ

  • \boxed{\boxed{\blue{ UT=\frac{5PQ}{8}}}}

ɢɪᴠᴇɴ

  • A triangle PQR with points U and T on PR and QR such that PU:UR = 3:5 and QT:TR = 3:5.

ᴛᴏ ғɪɴᴅ

  • Value of UT in terms of PQ.

ᴄᴏɴsᴛʀᴜᴄᴛɪᴏɴ

  • Draw a line segment connecting U and T.

ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴ

Now,

\to \frac{PU}{UR} = \frac{QT}{TR} = \frac{3}{5}

\to \frac{PU}{UR} +1 = \frac{QT}{TR} +1= \frac{3}{5}+1

\to \frac{PU+UR}{UR} = \frac{QT+TR}{TR}= \frac{3+5}{5}

\to \frac{PR}{UR} = \frac{QR}{TR}= \frac{8}{5}...(1)

In ΔPQR and ΔUTR

\:\:\:\:\: \frac{PR}{UR} = \frac{QR}{TR}

\:\:\:\:\:∠PRQ = ∠URT( common)

So, by SAS similarity criteria,

\:\:\:\:\: ΔPQR ~ ΔUTR

Hence,

\to \frac{PR}{UR} = \frac{QR}{TR} = \frac{PQ}{UT}

\to \frac{PQ}{UT}=\frac{8}{5}

\to \frac{UT}{PQ}=\frac{5}{8}

\to UT=\frac{5PQ}{8}

Similar questions