Math, asked by anglevanshi, 1 year ago

plzz guys❤️❤️❤️...... ​

Attachments:

Answers

Answered by Anonymous
3

SOLUTION

Given,

x= 2+ 3

So, x^2 = (2+3)^2

=) (2)^2 + (3)^2 + 2× 2×3

=) 4+ 3+ 43

=) 7+ 43

Now,

 =  >  \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  \\  =  >  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  =  \frac{2 -  \sqrt{3} }{4 - 3}  \\  =  > 2 -  \sqrt{3}  \\  \\ so \\   =  >  ( \frac{1}{x} ) {}^{2}  = (2 -  \sqrt{3} ) {}^{2}  = 4 + 3 - 4 \sqrt{3}  \\  =  > 7 - 4 \sqrt{ 3}  \\  \\  =  >  {x}^{2}  +  \frac{1}{x {}^{2} }  = 7 + 4 \sqrt{3}  + 7 - 4  \sqrt{3}  \\  =  > 14

hope it helps ✔️

Answered by Gaurav6009
1

Given,

x=2+√3

So,x^2=(2+√3)^2

=)(2)^2+(√3)^2+2×2×√3

=)4+3+4√3

=)7+4√3

Now,

=  >  \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  \\  =  >  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  =  \frac{2 -  \sqrt{3} }{4 - 3}  \\  =  > 2 -  \sqrt{3}  \\  \\ so \\   =  >  ( \frac{1}{x} ) {}^{2}  = (2 -  \sqrt{3} ) {}^{2}  = 4 + 3 - 4 \sqrt{3}  \\  =  > 7 - 4 \sqrt{ 3}  \\  \\  =  >  {x}^{2}  +  \frac{1}{x {}^{2} }  = 7 + 4 \sqrt{3}  + 7 - 4  \sqrt{3}  \\  =  > 14

Similar questions