Math, asked by varshajain69, 10 months ago

Plzz help me........ ​

Attachments:

Answers

Answered by Anonymous
1

Answer:

1/2x + 1/3y = 2

multiply this equation by 2/3

2/3 × 1/2x + 2/3 × 1/3y = 4/3

1/3x + 2/9y = 4/3

now second equation 1/3x + 1/2y = 13/6

Subtract (2) from (1)

2/9y - 1/2y = 4/3 - 13/6

1/y. ( 2/9 - 1/2) = (8 -13)/6

( 36 - 9)/18 = -5y /6

27/18 = -5y /6

9/6 = -5y/6

9 = -5y

y = -9/5

Substitute y = -9/5 in (1) eq

1/2x + 1/3y = 2

1/2x + 1/3(-9/5) = 2

1/2x -5/27 = 2

1/2x = 2+ 5/27

1/2x = (54+5)/27

1/2x = 59/27

27 = 118 x

x = 27/118

#answerwithquality #BAL

Answered by Anonymous
3

Answer:

Given pair is:

 \frac{1}{2x}  +  \frac{1}{3y}  = 2 \\  \\  \frac{1}{3x}  +  \frac{1}{2y}  = \frac{13}{6}

let \:  \frac{1}{x}  = a \: and \:  \frac{1}{y}  = b

Therefore,

 \frac{1}{2} a +  \frac{1}{3} b = 2 \\  \\  \frac{3a + 2b}{6}  = 2 \\  \\ 3a + 2b = 12 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  - (1)

and,

 \frac{1}{3} a +  \frac{1}{2} b =  \frac{13}{6}  \\  \\  \frac{2a + 3b}{6}  =  \frac{13}{6}  \\  \\2a  + 3b = 13 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  - (2)

eq(1) x 3 and eq(2) x 2

9a + 6b = 36 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  - (3) \\ 4a + 6b = 26 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  - (4)

By Elimination Method of eq(3) and eq(4)

9a + 6b = 36 \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ 4a + 6b = 26  \\  -   \:  \: \:  -   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: -  \\ 5a = 10 \\ a = 2

Put a = 2 in eq(1)

3(2) + 2b = 12 \\ 6  + 2b = 12 \\ 2b = 6\\ b = 3

Therefore,

 \frac{1}{x}  = a \\   \\  \frac{1}{x}  = 5 \\  \\ x =  \frac{1}{5}

and,

 \frac{1}{y}  = b \\  \\   \frac{1}{y}  = 3 \\  \\ y =  \frac{1}{3}

HOPE THIS ANSWER WILL HELP YOU.......

Mark as brainliest........

# jasleenlehri13........☺✌

Similar questions