Math, asked by shivam201130, 10 months ago

plzz help me guyzzs☺☺​

Attachments:

Answers

Answered by Anonymous
14

cos²A - sin²A = tan²B

_________ [ GIVEN ]

• We have to prove that cos²B - sin²B = tan²A.

____________________________

→ cos²A - sin²A = tan²B _______ (eq 1)

We know that

→ sin²A + cos²A = 1

→ cos²A = 1 - sin²A

Put value of cos²A in (eq 1)

→ (1 - sin²A) - sin²A = tan²B

→ 1 - 2sin²A = tan²B

→ - 2sin²A = tan²B - 1

→ 2sin²A = 1 - tan²B

→ sin²A = 1/2(1 - tan²B) _____ (eq 2)

Similarly,

→ sin²A = 1 - cos²A

Put value of sin²A in (eq 1)

→ cos²A - (1 - cos²A) = tan²B

→ cos²A - 1 + cos²A = tan²B

→ 2cos²A - 1 = tan²B

→ 2cos²A = tan²B + 1

→ cos²A = 1/2(tan²B + 1)

Now.. 1 + tan²B = sec²B

So,

→ cos²A = 1/2(sec²B) ______ (eq 3)

___________________________

Divide (eq 2) and (eq 3)

\dfrac{ {sin}^{2} A}{ {cos}^{2}A }  \:  =  \:  \dfrac{ \dfrac{1}{2} (1 \:  -  \:  {tan}^{2} B)}{ \dfrac{1}{2} {(sec}^{2}B  )}

→ tan²A = \dfrac{ (1 \:  -  \:  {tan}^{2} B)}{  {(sec}^{2}B  )}

→ tan²A = \dfrac{1}{ {sin}^{2} B}   \:  -  \:  \dfrac{ {tan}^{2} B}{sec ^{2}B }

Now..

\dfrac{1}{sinB} = cosB

tanB = \dfrac{sinB}{cosB}

→ tan²A = cos²B - \dfrac{  \frac{ {sin}^{2} B}{ {cos}^{2} B} }{ \frac{1}{ {cos}^{2}B }  }

→ tan²A = cos²B - sin²B

___ [ HENCE PROVED ]

______________________________

Similar questions