plzz help me guyzzs☺☺
Answers
cos²A - sin²A = tan²B
_________ [ GIVEN ]
• We have to prove that cos²B - sin²B = tan²A.
____________________________
→ cos²A - sin²A = tan²B _______ (eq 1)
We know that
→ sin²A + cos²A = 1
→ cos²A = 1 - sin²A
Put value of cos²A in (eq 1)
→ (1 - sin²A) - sin²A = tan²B
→ 1 - 2sin²A = tan²B
→ - 2sin²A = tan²B - 1
→ 2sin²A = 1 - tan²B
→ sin²A = 1/2(1 - tan²B) _____ (eq 2)
Similarly,
→ sin²A = 1 - cos²A
Put value of sin²A in (eq 1)
→ cos²A - (1 - cos²A) = tan²B
→ cos²A - 1 + cos²A = tan²B
→ 2cos²A - 1 = tan²B
→ 2cos²A = tan²B + 1
→ cos²A = 1/2(tan²B + 1)
Now.. 1 + tan²B = sec²B
So,
→ cos²A = 1/2(sec²B) ______ (eq 3)
___________________________
Divide (eq 2) and (eq 3)
→
→ tan²A =
→ tan²A =
Now..
= cosB
tanB =
→ tan²A = cos²B -
→ tan²A = cos²B - sin²B
___ [ HENCE PROVED ]
______________________________