plzz help me
If it is given that
(a+b)²+ (b+c)² + (c+d) ² =
4 (ab + bc + cd) answer is a=b=c
Answers
Correct Question
If it is given that
(a+b)²+ (b+c)² + (c+d) ² + (a+d)² =
6(ab + bc + cd+ ad) answer is a=b=c
✪AnSwEr
- (a+b)²+ (b+c)² + (c+d) ² =6(ab + bc + cd+ad)
- a=b=c
(a+b)²+ (b+c)² + (c+d) ² =6(ab + bc + cd)
We know that
=>(a+b)² = a² + b² +2ab
=>(c+b)² = b² + c² +2cb
=>(c+d)² = c² + d² +2cd
=>(a+d)² = a²+d² +2ad
Adding all
(a+b)²+ (b+c)² + (c+d) ²+(a+d)² =a² + b² +2ab+b² + c² +2cb+c² + d² +2cd
=>a² + b² +2ab+b² + c² +2cb+c² + d² +2cd+a²+d²+2ad=6(ab + bc + cd)
=>a² + b² +2ab+b² + c² +2cb+c² + d² +2cd+a²+d²+2ad=6ab + 6bc + 6cd +6ad
=>a² + b² +2ab+b² + c² +2cb+c² + d² +2cd+a²+d²+2ad-(6ab + 6bc + 6cd +6ad)=0
=>a² + b² +2ab+b² + c² +2cb+c² + d² +2cd+a²+d²+2ad-6ab - 6bc - 6cd - 6ad=0
=>a² + b²+b² + c² +c² + d² +a²+d²+-4ab - 4bc - 4cd - 4ad=0
=>(a-b)²+ (b-c)² + (c-d) ²+(a-d)² =0
Taking
(a-b)² = 0
=>a=b
Similarly
b=c , c=d and a =d
From this
a=b=c=d
Step-by-step explanation:
(a+b)²+ (b+c)² + (c+d) ² =6(ab + bc + cd)
We know that
=>(a+b)² = a² + b² +2ab
=>(c+b)² = b² + c² +2cb
=>(c+d)² = c² + d² +2cd
=>(a+d)² = a²+d² +2ad
Adding all
(a+b)²+ (b+c)² + (c+d) ²+(a+d)² =a² + b² +2ab+b² + c² +2cb+c² + d² +2cd
=>a² + b² +2ab+b² + c² +2cb+c² + d² +2cd+a²+d²+2ad=6(ab + bc + cd)
=>a² + b² +2ab+b² + c² +2cb+c² + d² +2cd+a²+d²+2ad=6ab + 6bc + 6cd +6ad
=>a² + b² +2ab+b² + c² +2cb+c² + d² +2cd+a²+d²+2ad-(6ab + 6bc + 6cd +6ad)=0
=>a² + b² +2ab+b² + c² +2cb+c² + d² +2cd+a²+d²+2ad-6ab - 6bc - 6cd - 6ad=0
=>a² + b²+b² + c² +c² + d² +a²+d²+-4ab - 4bc - 4cd - 4ad=0
=>(a-b)²+ (b-c)² + (c-d) ²+(a-d)² =0
Taking
(a-b)² = 0
=>a=b
Similarly
b=c , c=d and a =d
From this
a=b=c=d