Math, asked by anjalajoseph, 1 year ago

plzz help me to find both answer

Attachments:

Answers

Answered by abhi569
3
2)- 

[x^(a-b)]^(a+b)  * [x^(b-c)]^(b+c)  *  [x^(c-a)]^(c+a)

by formula,  a^2 -b^2 = (a+b)(a-b)

[x^(a^2 -b^2)] * [x^(b^2 -c^2] * [x^(c^2 -a^2)]



base is same, powers will add

x^[a^2 -b^2 +b^2 -c^2 +c^2 -a^2]

= x^(0)

= anything having 0 in its power, it is equal to 1

Now,

x^(0) = 1



i hope this help you


-by ABHAY
Answered by DaIncredible
2
Hey friend,
Here is the answer you were looking for:
1) \frac{2 -  \sqrt{5} }{2 + 3 \sqrt{5} }  = a \sqrt{5}  + b \\  \\ on \: rationalizing \: we \: get \\  \\  \frac{2 -  \sqrt{5} }{2 + 3 \sqrt{5} }  \times  \frac{2 - 3 \sqrt{5} }{2 - 3 \sqrt{5} }  \\  \\  =  \frac{2 \times 2 - 2 \times 3 \sqrt{5}  -  \sqrt{5}  \times 2 +  \sqrt{5}  \times 3 \sqrt{5} }{ {(2)}^{2}  -  {(3 \sqrt{5} )}^{2} }  \\  \\  =  \frac{4 - 6 \sqrt{5}  - 2 \sqrt{5}  + 15}{4 - 15}  \\  \\  =  \frac{19 - 8 \sqrt{5} }{ - 11}  \\  \\  =  \frac{ - 19 + 8 \sqrt{5} }{11}  = a \sqrt{5}  + b \\  \\ a =  \frac{8}{11}  \\  \\ b =  \frac{ - 19}{11}  \\  \\ 2) \:  \: ( \frac{ {x}^{a} }{ {x}^{b} } )^{a + b}  \times ( \frac{ {x}^{b} }{ {x}^{c} } )^{b + c}  \times ( \frac{ {x}^{c} }{ {x}^{a} }) ^{c + a}  \\  \\  = ( {x}^{a - b} )^{a + b}  \times ( {x}^{b - c})^{b + c}  \times ( {x}^{c - a} )^{c + a}  \\  \\  =  {x}^{ {a}^{2}  -  {b}^{2} }  \times  {x}^{ {b}^{2}  -  {c}^{2} }  \times  {x}^{ {c}^{2}  -  {a}^{2} }  \\  \\  =  {x}^{ {a}^{2} -  {b}^{2}  +  {b}^{2}  -  {c}^{2}  +  {c}^{2}  -  {a}^{2} }  \\  \\  after \: cancelling \: we \: get \\  \\  =  {x}^{0}  \\  \\  = 1

Hope this helps!!!

@Mahak24

Thanks...
☺☺

anjalajoseph: thank u so much
DaIncredible: my pleasure :)
Similar questions