Math, asked by pkaur200881, 9 months ago

Plzz prove the above ques using trigonometric identities.....​

Attachments:

Answers

Answered by 007Boy
2

Question :-

 \frac{ \cos \alpha  }{1 -  \sin \alpha  }  =  \frac{1 +  \sin\alpha  }{ \cos \alpha  }

Solution :-

 \frac{ \cos\alpha }{1 -  \sin \alpha  }  =  \frac{1 +  \sin\alpha }{ \cos\alpha  }

Now do cross Multiplication

 \cos {}^{2}  \alpha  = 1 -  \sin {}^{2}  \alpha

∵ \:  \cos {}^{2} \alpha  +  \sin {}^{2} \alpha  = 1 \\  \:  \:  \:  \:  \:  \: cos {}^{2}  \alpha  \:  \:  \:  = 1 -  \sin {}^{2}  \alpha  \\  \\  \\ ∴ \cos {}^{2}  \alpha  =  \cos {}^{2}  \alpha  \\  \\  \\  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  lhs = rhs \:  \:  \:  \:  \:  \: (proved)

Answered by InfiniteSoul
0

{\huge{\bold{\purple{\bigstar{\boxed{\boxed{\bf{Question}}}}}}}}

\sf\dfrac{cos\theta}{1 - sin\theta} = {1+ sin \theta}{cos\theta}

{\huge{\bold{\purple{\bigstar{\boxed{\boxed{\bf{Answer}}}}}}}}

\sf\dfrac{cos\theta}{1 - sin\theta} = \dfrac{1+ sin \theta}{cos\theta}

  • cross multiplication

\sf cos \theta \times cos \theta = (1-sin\theta)(1+cos\theta)

{\bold{\blue{\boxed{\bf{ (a+b)(a-b) = a^2 - b^2}}}}}

\sf cos^2\theta = 1^2 - sin^2\theta

{\bold{\blue{\boxed{\bf{sin^2\theta + cos^2\theta = 1 }}}}}

{\bold{\blue{\boxed{\bf{sin^2 \theta - 1 = cos^2\theta }}}}}

\sf cos^2 \theta = cos^2 \theta

{\bold{\red{\boxed{\bf{\dag cos^2 \theta = cos^2 \theta}}}}}

{\bold{\pink{\boxed{\bf{\dag LHS = RHS}}}}}

{\bold{\green{\boxed{\bf{\dag Hence Proved}}}}}

________________________❤

THANK YOU ❤

Similar questions