Science, asked by divyapandey0204, 5 months ago

plzz Simplyfy this question​

Attachments:

Answers

Answered by Mysterioushine
6

Question :

Simplify \sf{\bigg(\dfrac{18}{16}\bigg)^{-3/4}}

Required Solution :

   \\ \implies\sf{\bigg(\dfrac{18}{16}\bigg)^{-3/4}} \\   \\

• Cancelling 18 and 16 we get ;

 \\  \implies\sf{\bigg(\dfrac{18}{16}\bigg)^{-3/4}} \\  \\  \\  \implies \sf \bigg( \frac{9}{8}  \bigg)^{ - 3 / 4}  \\  \\

• Using the identity , \sf{a^{-n}=\dfrac{1}{a^n}}

 \\  \implies \sf \bigg( \frac{ 8}{9}  \bigg)^{  3/4}  \\  \\

• Using the identity , \sf{\bigg(\dfrac{a}{b}\bigg)^{m}=\dfrac{a^m}{b^m}}

  \\ \implies\sf\bigg(\dfrac{8 {}^{3/4} }{9 {}^{3/4} }\bigg) \\  \\

• Writing eight as two to the power 3 [Since 8 is the cube of 2] we get ;

 \\  \sf \implies \sf \bigg( \frac{2 {}^{(3) {}^{3/4} } }{9 {}^{3/4} }  \bigg) \\  \\

• Using the identity , \sf {a^{m {}^{(n)} } = a^{mn}}

 \\ \sf\implies \bigg( \frac{ {2}^{9/4} }{9 {}^{3/4} }  \bigg) \\  \\

• Writing nine as three to the power two [Since 9 is the square of 3] we get ;

 \\  \implies \sf \bigg( \frac{ {2}^{9/4} }{3 {}^{(2) {}^{3/4} } }  \bigg) \\  \\

• Using the identity , \sf {a^{m {}^{(n)} } = a^{mn}}

 \\ \implies \sf \bigg( \frac{ {2}^{9/4} }{ {3}^{3/2} }  \bigg) \\  \\  \\  \implies{\underline{\boxed{\sf{{\bigg(\dfrac{18}{16}\bigg)^{-3/4}} = \sf \bigg( \frac{ {2}^{9/4} }{ {3}^{3/2} }  \bigg) }}}}

Similar questions