plzz solve both for exam ok
Attachments:

Answers
Answered by
0
Check it in NCERT
u will definitely get your answer
Answered by
0
1/
Solution:
_____________________________________________________________
Given:
3a + 2b = 5c,.
&
abc = 0
_____________________________________________________________
To Find :
Value of 27a³ + 8b³ - 125c³
_____________________________________________________________
27a³ + 8b³ - 125c³
=> (3a)³ + (2b)³ + (-5c)³
we know that,
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² -ab -bc -ac)
=> (3a)³ + (2b)³ + (-5c)³ - 3(0) = (3a + 2b - 5c)((3a)² + (2b)² +(-5c)² -(3a)(2b) -(2b)(-5c) - (3a)(-5c))
=> (3a)³ + (2b)³ + (-5c)³ = (0)(9a² + 4b² + 25c² -6ab +10bc +15ac)
=> 27a³ + 8b³ -125c³ = 0
_____________________________________________________________
2/
Solution:
_____________________________________________________________
Given:

_____________________________________________________________
To Find :
The value of
_____________________________________________________________
We know that,
(a + b)² = a² + 2ab + b²,.
(a+ b)² - 2ab = a² + b²,..
so,
... (i)
Adding 2 both the sides,
=>
=>
=>
...(ii)
=>
=>
=>
=>
=> [tex] x^{2} - \sqrt{68}x = -1 [/tex]]
=>
(multiplying and dividing by 2)
=>
(Adding √68/2 both the sides)
=>
=>
=>
=>
=>
=>
And we know that,
a³ - b³ = (a-b)(a² + ab + b²),.
=>
=>
=>
=>
=> (8)(67)
=> 536
_____________________________________________________________
Hope it Helps!!
Solution:
_____________________________________________________________
Given:
3a + 2b = 5c,.
&
abc = 0
_____________________________________________________________
To Find :
Value of 27a³ + 8b³ - 125c³
_____________________________________________________________
27a³ + 8b³ - 125c³
=> (3a)³ + (2b)³ + (-5c)³
we know that,
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² -ab -bc -ac)
=> (3a)³ + (2b)³ + (-5c)³ - 3(0) = (3a + 2b - 5c)((3a)² + (2b)² +(-5c)² -(3a)(2b) -(2b)(-5c) - (3a)(-5c))
=> (3a)³ + (2b)³ + (-5c)³ = (0)(9a² + 4b² + 25c² -6ab +10bc +15ac)
=> 27a³ + 8b³ -125c³ = 0
_____________________________________________________________
2/
Solution:
_____________________________________________________________
Given:
_____________________________________________________________
To Find :
The value of
_____________________________________________________________
We know that,
(a + b)² = a² + 2ab + b²,.
(a+ b)² - 2ab = a² + b²,..
so,
Adding 2 both the sides,
=>
=>
=>
=>
=>
=>
=>
=> [tex] x^{2} - \sqrt{68}x = -1 [/tex]]
=>
=>
=>
=>
=>
=>
=>
=>
And we know that,
a³ - b³ = (a-b)(a² + ab + b²),.
=>
=>
=>
=>
=> (8)(67)
=> 536
_____________________________________________________________
Hope it Helps!!
sivaprasath:
Mark as Brainliest,.
Similar questions
Math,
9 months ago
Social Sciences,
9 months ago
English,
9 months ago
Social Sciences,
1 year ago
Physics,
1 year ago
English,
1 year ago