Math, asked by Rupsa1111, 1 year ago

plzz solve fast..the circled sum. ..derivative 2nd order

Attachments:

Answers

Answered by rakeshmohata
1
Hope u like my process
=====================
 {x}^{p}  {y}^{q}  = (x + y) ^{p + q}
Taking log on both sides we get
_________________________

p.log(x) + q.log(y) = (p+q).log(x +y)

Differentiating both sides by x, we get
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
 \frac{p}{x}  +  \frac{q}{y}  \times  \frac{dy}{dx}  = (p + q) \times  \frac{1}{x + y} (1 +  \frac{dy}{dx} ) \\ \\   or. \:  \: \frac{q}{y}  \times  \frac{dy}{dx}  =  \frac{p + q}{x + y}  +  \frac{p + q}{x + y}  \times  \frac{dy}{dx}  \\  \\ or. \:  \:  \frac{dy}{dx}  -  \frac{y}{q} \times  \frac{p + q}{x + y} \times  \frac{dy}{dx}    =  \frac{y(p + q)}{q(x + y)}  \\  \\ or. \:  \:  \frac{dy}{dx}  \times (1 -  \frac{y(p + q)}{q(x + y)} ) =  \frac{y(p + q)}{q(x + y)}  \\  \\ or. \:  \:  \frac{dy}{dx}  \times  \frac{(q(x + y) - y(p + q))}{q(x + y)}  \times q(x + y) = y(p + q) \\  \\ or. \:  \:  \frac{dy}{dx}  =  \frac{y(p + q)}{(q(x + y) - y(p + q))}  \\  \\ or. \:  \:  \frac{dy}{dx}  =  \frac{1}{ \frac{q(x + y)}{y(p + q)}  - 1}
Again Differentiating in both sides we get!!
---------------------------------------------------------------
See the pic..
_-_-_-_-_-_-_-_-
Hope this is ur required answer

Proud to help you
Attachments:

rakeshmohata: thnx for the brainliest one
Rupsa1111: wels
Similar questions