Math, asked by tarasingha8888888, 11 months ago

plzz solve it ......​

Attachments:

Answers

Answered by praneethks
1

Step-by-step explanation:

 \frac{ \tan( x) }{1 -  \cot(x) } +  \frac{ \cot(x) }{1 -  \tan(x) }  =  >  \frac{ \tan(x) }{1 -  \frac{1}{ \tan(x) }} +

 \frac{ \frac{1}{ \tan(x) } }{1 -  \tan(x) }  =  >  \frac{ {( \tan(x))}^{2}}{ \tan(x) - 1} +  \frac{1}{ \tan(x)(1 -  \tan(x))}

 =  >  \frac{ \frac{1}{ \tan(x) } -  {( \tan(x)) }^{2} }{ 1 - \tan(x)} =  >  \frac{1 -  {( \tan(x)) }^{3} }{(1 -  \tan(x)) \tan(x) }

 \frac{(1 -  \tan(x))(1 +  {( \tan(x) )}^{2} +  \tan(x)  }{ \tan(x)(1 -  \tan(x))}  =  >

 \frac{1 +  {( \tan(x)) }^{2} +  \tan(x) }{ \tan(x)} =  > 1 +  \frac{1 +  {( \tan(x)) }^{2} }{ \tan(x)} =  >

 =  > 1 +  \frac{ {( \sec(x)) }^{2} }{ \tan(x)} =  > 1 +  \sec(x). \frac{ \sec(x) }{ \tan(x)}

 =  >  1 +  \sec(x)  \csc(x)

Hence proved. Hope it helps you.

Answered by shrid27
0
This is ur answer....
Pls mark as brainliest...
Attachments:
Similar questions