Math, asked by ralhi, 5 months ago

plzz solve it.... ?!​

Attachments:

Answers

Answered by BrainlyEmpire
17

\huge\frak{AnswEr :}

Given Parameters :

⠀⠀⠀⠀⠀⠀⠀⠀⠀

Perimeter = 30 cm

⠀⠀⠀⠀⠀⠀⠀⠀⠀

Length of equal sides = 12cm

⠀⠀⠀⠀⠀⠀⠀⠀⠀

Let us assume that the third side of isosceles triangle be x cm.

⠀⠀⠀⠀⠀⠀⠀⠀⠀

{\underline{\sf \bigstar \:  According  \: to \:  the  \: question :}} \\  \\

\implies\sf \:x + 12 + 12 = 30 \\ \\  \\  \implies\sf \:x + 24 = 30 \\ \\  \\  \implies\sf \:x = 30 - 24 \\ \\  \\  \implies \large{ \boxed{\frak{ \purple{ \:x = 6}}}} \\  \\

⠀__________________________

Now,

⠀⠀⠀⠀⠀⠀⠀⠀⠀

By using Heron's formula :

⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies\sf \:  s = \dfrac{a + b + c}{2} \\  \\  \\ \implies\sf \: s =  \dfrac{Perimeter}{2}  \\  \\  \\  \implies\sf \: s = \frac{30}{2} \\  \\  \\ \implies \large{ \boxed{ \frak{\pink{\: s = 15}}}} \\  \\

⠀__________________________

We know that,

⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies\sf  \: Area  \: of \:  \triangle =  \sqrt{s(s - a)(s - b)(s - c)}  \\  \\  \\

Substituting the values :

⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies\sf  \: Area  \: of \:  \triangle =  \sqrt{15(15 - a)(15 - b)(15 - c)} \\  \\  \\ \implies\sf  \: Area  \: of \:  \triangle =\sqrt{15(15 - 12)(15 - 12)(15 - 6)} \\  \\  \\ \implies\sf  \: Area  \: of \:  \triangle =  \sqrt{15 \times 3 \times 3 \times 9}  \\  \\  \\ \implies\sf  \: Area  \: of \:  \triangle = 3 \times 3 \times  \sqrt{15}  \\  \\  \\ \implies\sf  \: Area  \: of \:  \triangle = 9 \times \sqrt{15} \\  \\  \\ \implies\sf  \: Area  \: of \:  \triangle = 9 \times 3.88 \\  \\  \\ \implies \large{ \boxed{ \frak{\blue{ \: Area  \: of \:  \triangle = 34.92 \: cm {}^{2} }}}} \\  \\

\therefore \: {\underline{\sf{ Area \: of  \: the  \: isosceles \: \triangle  \: is  \:  \bf \: 34.92 cm{}^{2}. }}} \\

Answered by MissLuxuRiant
0

\huge\frak{AnswEr :}

Given Parameters :

⠀⠀⠀⠀⠀⠀⠀⠀⠀

Perimeter = 30 cm

⠀⠀⠀⠀⠀⠀⠀⠀⠀

Length of equal sides = 12cm

⠀⠀⠀⠀⠀⠀⠀⠀⠀

Let us assume that the third side of isosceles triangle be x cm.

⠀⠀⠀⠀⠀⠀⠀⠀⠀

\begin{gathered}{\underline{\sf \bigstar \: According \: to \: the \: question :}} \\ \\ \end{gathered}

\begin{gathered}\implies\sf \:x + 12 + 12 = 30 \\ \\ \\ \implies\sf \:x + 24 = 30 \\ \\ \\ \implies\sf \:x = 30 - 24 \\ \\ \\ \implies \large{ \boxed{\frak{ \purple{ \:x = 6}}}} \\ \\ \end{gathered}

⠀__________________________

Now,

⠀⠀⠀⠀⠀⠀⠀⠀⠀

By using Heron's formula :

⠀⠀⠀⠀⠀⠀⠀⠀⠀

\begin{gathered}\implies\sf \: s = \dfrac{a + b + c}{2} \\ \\ \\ \implies\sf \: s = \dfrac{Perimeter}{2} \\ \\ \\ \implies\sf \: s = \frac{30}{2} \\ \\ \\ \implies \large{ \boxed{ \frak{\pink{\: s = 15}}}} \\ \\ \end{gathered}

⠀__________________________

We know that,

⠀⠀⠀⠀⠀⠀⠀⠀⠀

\begin{gathered}\implies\sf \: Area \: of \: \triangle = \sqrt{s(s - a)(s - b)(s - c)} \\ \\ \\ \end{gathered}

Substituting the values :

⠀⠀⠀⠀⠀⠀⠀⠀⠀

\begin{gathered}\implies\sf \: Area \: of \: \triangle = \sqrt{15(15 - a)(15 - b)(15 - c)} \\ \\ \\ \implies\sf \: Area \: of \: \triangle =\sqrt{15(15 - 12)(15 - 12)(15 - 6)} \\ \\ \\ \implies\sf \: Area \: of \: \triangle = \sqrt{15 \times 3 \times 3 \times 9} \\ \\ \\ \implies\sf \: Area \: of \: \triangle = 3 \times 3 \times \sqrt{15} \\ \\ \\ \implies\sf \: Area \: of \: \triangle = 9 \times \sqrt{15} \\ \\ \\ \implies\sf \: Area \: of \: \triangle = 9 \times 3.88 \\ \\ \\ \implies \large{ \boxed{ \frak{\blue{ \: Area \: of \: \triangle = 34.92 \: cm {}^{2} }}}} \\ \\ \end{gathered}

\begin{gathered}\therefore \: {\underline{\sf{ Area \: of \: the \: isosceles \: \triangle \: is \: \bf \: 34.92 cm{}^{2}. }}} \\ \end{gathered}

Similar questions