Math, asked by starfish102, 1 year ago

plzz solve it fast as u can.​

Attachments:

argupta0904: easy
argupta0904: question

Answers

Answered by tapsi98
2

Answer:

l hope this helps you

please mark as brilliant

Attachments:
Answered by Anonymous
13

\sqrt{ \dfrac{1 \:  +  \: sin \: A}{1 \:  - \:  sin \: A} } = sec A + tan A

_________ [GIVEN EQUATION]

Taking L.H.S.

\sqrt{ \dfrac{1 \:  +  \: sin \: A}{1 \:  - \:  sin \: A} }

Rationalize it

\implies \sqrt{ \dfrac{1 \:  +  \: sin \: A}{1 \:  - \:  sin \: A} }  \:  \times  \:  \sqrt{ \dfrac{1 \:  +  \: sin \: A}{1 \:  +  \: sin \: A} }

(a + b) (a - b) = a² - b²

\implies \sqrt{ \dfrac{ {(1 \:  +  \: sin \: A)}^{2} }{ {1}^{2} \:  -  \:  {sin}^{2}A  } }

\implies \sqrt{ \dfrac{ {(1 \:  +  \: sin \: A)}^{2} }{{cos}^{2}A  } }

\implies \bigg( {\sqrt{ \dfrac{ {1 \:  +  \: sin \: A} }{cos \: A  }}\bigg)}^{2}

\implies \dfrac{1 \:  +  \: sin \: A }{cos \: A  }

• sec A = \dfrac{1}{cos\:A}

• tan A = \dfrac{sin\:A}{cos\:A}

\implies \dfrac{1}{cos \: A  } + \dfrac{sin \: A }{cos \: A  }

\implies sec A + tan A

L.H.S. = R.H.S.

______ [HENCE PROVED]

_______________________________

Similar questions