plzz solve it fastly.....
Answers
Answer:
please mark me as brainliest
Given : 3Cosθ = 5Sinθ
To find : Value of (5Sinθ - 2Sec³θ + 2Cosθ)/(5Sinθ +2Sec³θ - 2Cosθ)
Solution:
3Cosθ = 5Sinθ
=> tanθ = 3/5
Sec²θ = 1 + Tan² θ = 1 + (3/5)² = 34/25
(5Sinθ - 2Sec³θ + 2Cosθ)/(5Sinθ +2Sec³θ - 2Cosθ)
= (3Cosθ - 2Sec³θ + 2Cosθ)/(3Cosθ +2Sec³θ - 2Cosθ)
= (5Cosθ - 2Sec³θ)/(Cosθ +2Sec³θ)
Dividing numerator & denominator by Cosθ ( 1/ Cosθ = Secθ)
= (5 - 2Sec⁴θ)/(1 +2Sec⁴θ)
= (5 - 2(34/25)²) /( 1 + 2(34/25)²)
= ( 3125 - 2312) / ( 625 + 2312)
= 813/2937
= 271/979
(5Sinθ - 2Sec³θ + 2Cosθ)/(5Sinθ +2Sec³θ - 2Cosθ) = 271/979
Learn More:
If sin θ + cos θ = 2 , then evaluate : tan θ + cot θ - Brainly.in
https://brainly.in/question/7871635
Prove the following ( sin x - cos x +1)/ (sin x + cos x -1) = 1 / (sec x
https://brainly.in/question/12563868