Math, asked by srkv1196, 5 months ago

plzz solve it i m not getting my answer​

Attachments:

Answers

Answered by amansharma264
9

EXPLANATION.

 \sf \:  \implies \:  \int \:  \dfrac{ {x}^{2}  + 1}{ {x}^{4}  -  {x}^{2} + 1 }dx  \\  \\  \sf \:  \implies \: divide \: numerator \:  \: and \:  \: denominator \: by \:  {x}^{2} \\  \\   \sf \:  \implies \:  \int \:  \frac{ \dfrac{ {x}^{2} }{ {x}^{2} }  +  \dfrac{1}{ {x}^{2} } }{ \dfrac{ {x}^{4} }{ {x}^{2} } -  \dfrac{ {x}^{2} }{ {x}^{2} }  +  \dfrac{1}{ {x}^{2} }  }  dx \\  \\  \\  \sf \:  \implies \: \int \:  \frac{1 +  \dfrac{1}{ {x}^{2} } }{ {x}^{2}  - 1 +  \dfrac{1}{ {x}^{2} } }  dx

 \sf \:  \implies \: replace \:  =  - 1 =  - 2 + 1 \\  \\  \sf \:  \implies \:  \int \:  \frac{1 +  \dfrac{1}{ {x}^{2} } }{ {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2 + 1} dx \\  \\  \sf \:  \implies \:  \int \:  \dfrac{1 +  \dfrac{1}{ {x}^{2} } }{(x -  \dfrac{1}{x}) {}^{2}  + 1 } dx

 \sf \:  \implies \: let \: u \:  =  \: x -  \dfrac{1}{x}  \\  \\  \sf \:  \implies \: differentiate \: w.r.t \:  \: to \:  \: u \\  \\  \sf \:  \implies \: du \:  = (1 +  \frac{1}{ {x}^{2} } )dx \\  \\  \sf \:  \implies \:  \int \:  \frac{du}{ {u}^{2} + 1 }

 \sf \:  \implies \:  \tan {}^{ - 1} ( \dfrac{u}{1} )  + c \\  \\  \sf \:  \implies \:  \tan {}^{ - 1} (x -  \frac{1}{ {x}^{} } )  + c \\  \\  \sf \:  \implies \:  \tan {}^{ - 1} ( \frac{ {x}^{2} - 1 }{x}  )  + c

Option C is correct.

Similar questions