Math, asked by eruma75, 5 months ago

plzz solve kardo.....​

Attachments:

Answers

Answered by BrainlyEmpire
19

 \implies \huge \sf\underline \red{Answer}

\sf\therefore \underline \purple{area = 21 \sqrt{11} {cm}^{2}}

To find:-

Area of triangle

solution:-

we know that area of triangle formula,

 \bf{ \boxed{ \underline{ \underline{ \red{ \sf{area \: of \: triangle =  \sqrt{s(s - a)(s - b)(s - c) \: }}}}}}}

 \sf \underline{so}

s is semi perimeter

a,b,c is sides of triangle

\sf \underline{Given}

a = 18 cm

b = 10 cm

perimeter = 42cm

\sf \underline{we \: know \: that \: semi \: perimeter \: formula}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{semi \: perimeter =  \dfrac{perimeter}{2}}

 \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{s =  \dfrac{42}{2}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{semi  = 21cm}

we have to find c

\sf \underline{now}

 \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \blue{perimeter = 42}

 \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \blue{a + b + c = 42}

 \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \blue{18cm + 10cm + c = 42}

 \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \blue{28cm + c= 42}

 \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \blue{c = 42 - 28cm}

 \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \blue{c = 14cm}

\sf \underline{take \: the \: formula \: again : }

\bf{ \boxed{ \underline{ \underline{ \red{ \sf{area \: of \: triangle =  \sqrt{s(s - a)(s - b)(s - c) \: }}}}}}}

a = 18 cm

b = 10 cm

c = 14 cm

s = 21 cm

\bf{ \boxed{ \underline{ \underline{ \red{ \sf{area \: of \: triangle =  \sqrt{s(s - a)(s - b)(s - c) \: }}}}}}}

 \:  \:  \:  \:  \:  \:  \sf{Area \: of \: traingle =  \sqrt{21(21 - 18)(21 - 10)(21 - 14)}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ =  \sqrt{21(3)(11)(7)}}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ =  \sqrt{21(7 \times 3)(11)}}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ =  \sqrt{21(21)(11)}}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ =  \sqrt{21 \times 21 \times  \sqrt{11}} }

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ =  \sqrt{ {21}^{2} \times  \sqrt{11}}   }

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ = 21 \times  \sqrt{11} }

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ = 21 \sqrt{11} }

 \sf  \purple\therefore \underline{area = 21 \sqrt{11} {cm}^{2}}

Answered by Anonymous
0

Answer : \sf{21\sqrt{11}cm^2}

Given :

Two sides of a triangle measure 18 cm and 10 cm

The perimeter of the triangle is 42 cm

To find :

The area of the traingle

Solution :

As we know that perimeter is equal to the sum of all three sides of a triangle ,

= a + b + c = 42 cm

= 18 + 10 + c = 42 cm

= 28 + c = 42 cm

= c = 42 - 28

= c = 14 cm

Also the semi perimeter of a triangle ,

\sf\implies\:\dfrac{Perimeter}{2}

\sf\implies\:\dfrac{42}{2}

\sf\implies\:21\:cm

Here we can use Heron's formula to find the area of the triangle .

Formula :

\sf{Area\:=\:\sqrt{s(s\:-\:a)(s\:-\:b)(s\:-\:c)}}

Where ,

s = semi perimeter

a = length of side a

b = length of side b

c = length of side c

According to the Statement we have ,

s = 21 cm

a = 18 cm

b = 10 cm

c = 14 cm

Solving for area ,

\sf{Area\:=\:\sqrt{s(s\:-\:a)(s\:-\:b)(s\:-\:c)}}

\sf{Area\:=\:\sqrt{21(21\:-\:18)(21\:-\:10)(21\:-\:14)}}

\sf{Area\:=\:\sqrt{21(3)(11)(7)}}

\sf{Area\:=\:\sqrt{4851}}

\sf{Area\:=\:21\sqrt{11}cm^2}

Similar questions