Math, asked by shakti34, 1 year ago

plzz solve on paper ​

Attachments:

Answers

Answered by Anonymous
5

Question :-

If x = 1/(4 - √15), y = 1/(4 + √15), then find the value of x³ + y³ is

(A) 486

(B) 439

(C) 488

(D) 476

Solution :-

x = 1/(4 - √15)

y = 1/(4 + √15)

Finding the value of x + y

 \sf x + y =  \dfrac{1}{4 -  \sqrt{15} }  +  \dfrac{1}{4 +  \sqrt{15}  }  \\  \\  \\  \tt \underline{taking \ lcm} \\  \\  \\  \sf = \dfrac{4 +  \sqrt{15} + 4 -  \sqrt{15} }{(4 -  \sqrt{15})(4 +  \sqrt{15)}  }  \\  \\ \\  \sf =  \dfrac{8}{ {4}^{2} -  {( \sqrt{15}) }^{2}  }  \qquad \bigg[ \because (x - y)(x + y) =  {x}^{2}  -  {y}^{2}  \bigg] \\  \\  \\  \sf =  \dfrac{8}{16 - 15}  \\  \\  \\ \sf =  \dfrac{8}{1}  \\  \\  \\  \rm x + y = 8

Finding the value of xy

 \sf xy =  \bigg( \dfrac{1}{4 -  \sqrt{15} } \bigg) \bigg( \dfrac{1}{4 +  \sqrt{15} } \bigg) \\  \\  \\  \sf =  \dfrac{1}{(4 -  \sqrt{15})(4 +  \sqrt{15})}  \\  \\  \\ \sf =  \dfrac{1}{ {4}^{2}  -  {( \sqrt{15})}^{2} }  \qquad \bigg[ \because (x  - y)(x + y) =  {x}^{2}  -  {y}^{2}  \bigg] \\  \\  \\  \\  \sf =   \dfrac{1}{16 - 15}  \\  \\  \\  \sf =  \dfrac{1}{1}  \\  \\  \\  \rm xy = 1

We know that

(x + y)³ = x³ + y³ + 3xy(x + y)

Here

• x + y = 8

• xy = 1

By substituting the values in the above identity

⇒ (8)³ = x³ + y³ + 3(1)(8)

⇒ 512 = x³ + y³ + 24

⇒ 512 - 24 = x³ + y³

⇒ 488 = x³ + y³

⇒ x³ + y³ = 488

Therefore the value of x³ + y³ is 488 i.e option (C).

Answered by kristina0
0
Your answer is option C
Similar questions