Math, asked by princerastogi7316, 1 year ago

plzz solve one and two.​

Attachments:

Answers

Answered by Avengers00
16
\underline{\underline{\Huge{\textbf{Question:}}}}

\sf\textsf{ Find r , if $^{n}_{r}$P=720 and $^{n}_{r}C$=120}

\\

\underline{\underline{\Huge{\textbf{Solution:}}}}

\boxed{\begin{minipage}{5 cm}\begin{aligned}\bigstar\: \quad \bf ^{n}_{r}P\quad &= \dfrac{n !}{(n-r)!}\\\atop\\\bigstar\: \quad \bf ^{n}_{r}C \quad &= \dfrac{n !}{(n-r)! \cdot r!}\end{aligned}\end{minipage}}

\mathsf{Divide\: ^{n}_{r}P\: by\: ^{n}_{r}C}

\quad \mathsf{\dfrac{^n_rP}{^n_rC}=\dfrac{720}{120}}

\implies \mathsf{\dfrac{\frac{n!}{(n-r)!}}{\frac{n!}{(n-r)!\cdot r!}} = \dfrac{72\cancel{0}}{12\cancel{0}}}

\implies \mathsf{\dfrac{\cancel{n!}}{\cancel{(n-r)!}} \times \dfrac{\cancel{(n-r)!} \cdot r!}{\cancel{n!}} = 6 }

\implies \mathsf{r! = 6}

\implies \mathsf{r! = 3!}

\therefore

\blacksquare\: \: \LARGE{\underline{\mathbf{r \: = \: \boxed{\utilde{3}}}}}

\\\\

\underline{\underline{\Huge{\textbf{Question:}}}}

\sf\textsf{Prove that $\sum^{n}_{r=0}\, 3^r\: ^n_rC\: =\: 4^n$}

\\

\underline{\underline{\Huge{\textbf{Solution:}}}}

\sf\textbf{From Binomial Theorem}

\boxed{\begin{minipage}{10 cm}<br /><br />\bigstar \quad \tiny{\tt \sum\limits_{r=0}^{n} \, ^n_rC \: a^{n-r}\: b^r\; = \; ^nC_0\, a^n b^0 + ^nC_1\, a^{n-1}\, b^1+ \cdots \cdots + ^nc_{n-1}\, a^1\, b^{n-1}+^nC_n\, a^n\, b^0}\\\atop\bigstar \quad \bf \sum\limits_{r=0}^{n} \, ^n_rC \: a^{n-r}\: b^r \; = \; (a+b)^{n}\rule{2cm}{\fboxrule}\; [1]\end{minipage}}

\sf\textsf{Plug in 1 for a and 3 for b into the eq [1]}

\implies \mathsf{\sum\limits_{r=0}^{n} \, ^n_rC \: 1^{n-r}\: 3^r \; = \; (1+3)^{n}}

\implies \mathsf{\sum\limits_{r=0}^{n} \, ^n_rC \: (1)\: 3^r \; = \; (4)^{n}}

\therefore

\blacksquare \: \: \LARGE{\underline{\Large{\mathbf{\sum^{n}_{r=0}\, 3^r\: ^n_rC\: =\: 4^n}}}}

princerastogi7316: Samaje ma nhi aye..
Avengers00: May I know where you need to clarify?
Avengers00: In the first question, r is to be found, given two relations (ncr and npr). Here, we divide npr by ncr to interlink both the relations and then find either r or n can be found. (As per the question, only r has to be found). The second question is based on binomial theorem, we Substitute a=1 and b= 3 in the formula [1] (mentioned in the box). Hope above clarifies your doubts
Avengers00: find either r or n***
princerastogi7316: second wla
Avengers00: just Substitute a=1 and b=3 in the formula (which is according to Binomial Theorem)
Similar questions