plzz solve question no 6,1st one
Attachments:
Answers
Answered by
1
Here, CD = BD - BC
And BD = BC + CD
Both triangle ABD and ACD are right triangles.
So in ΔACD, AD² = AC² - CD² → (1)
In ΔABD,
AB² = BD² + AD²
AB² = BD² + (AC² - CD²) [According to (1)]
AB² = BD² + AC² - CD²
AB² = BD² + AC² - (BD - BC)² [CD = BD - BC]
AB² = BD² + AC² - (BD² - 2BC · BD + BC²)
AB² = BD² + AC² - BD² + 2BC · BD - BC²
AB² = AC² + 2BC · BD - BC²
AB² = AC² - BC² + 2BC · BD
AB² = AC² - BC² + 2BC(BC + CD) [BD = BC + CD]
AB² = AC² - BC² + 2BC² + 2BC · CD
AB² = AC² + BC² + 2BC · CD
AB² = BC² + AC² + 2BC · CD
Hence proved!
Hope this helps. ^_^
Thank you. :-))
bhramanand0:
hii thanks
Similar questions