English, asked by vaishanavi2003, 6 months ago

Plzz Solve that Question ​

Attachments:

Answers

Answered by Anonymous
5

 \tt The\: area \: bounded \: by \: the \: curve \: y = {sin}^{2}(\frac{x}{2})\: and\: x\:axis \\ \\ \tt The \: coordinates \: are \: x = 0 , \frac{\pi}{2} \\ \\ \tt The\: area \: of \: curve \: is \: given \: as \\ \\ \tt A = \int \limits_{0}^{\frac{\pi}{2}} {sin}^{2}(\frac{x}{2}) dx \\ \\ \tt Multiplying\:and\: dividing\:by\:2 \\ \\ \tt A = \frac{1}{2} \int \limits_{0}^{\frac{\pi}{2}} 2{sin}^{2}(\frac{x}{2})dx \\ \\ \tt A = \frac{1}{2} \int \limits_{0}^{\frac{\pi}{2}} ( 1 - cosx )dx \\ \\ \tt A = \frac{1}{2} (x - sin x) \\ \\ \tt A = \frac{1}{2} (\frac{\pi}{2} - 0 - sin\frac{\pi}{2} + sin0) \\ \\ \tt A = \frac{1}{2}( \frac{\pi}{2} - 1 ) \\ \\ \boxed{\bold{\underline{\red{\tt A = \frac{1}{2}(\frac{\pi}{2} - 1 ) \:sq.units }}}} \\ \\ \bold{\huge{\orange{\mathfrak{Shreya}}}}

Answered by itzvaishu2003
13

See the above Answer...

Option D is the correct answer

Similar questions