Math, asked by RishiRao, 8 months ago

Plzz solve the above question ☝️

Attachments:

Answers

Answered by Anonymous
2

Solution:-

 \rm \dfrac{ \cos\theta}{1 -  \tan\theta }  +  \dfrac{ \sin \theta}{1 -  \cot\theta }

 \dfrac{ \cos\theta }{1 -  \dfrac{ \sin \theta}{ \cos \theta } }  +  \dfrac{ \sin\theta }{1 -  \dfrac{ \cos \theta }{ \sin\theta} }

 \dfrac{ \cos \theta }{ \dfrac{ \cos\theta -  \sin\theta }{ \cos\theta } }  +  \dfrac{ \sin \theta }{ \dfrac{ \sin\theta -  \cos \theta }{ \sin \theta} }

 \dfrac{ \cos {}^{2} \theta }{ \cos\theta -   \sin \theta  }   +  \dfrac{ \sin {}^{2} \theta }{ \sin\theta -  \cos \theta  }

 \dfrac{ \cos {}^{2}  \theta }{ \cos \theta -  \sin\theta }  -   \dfrac{ \sin {}^{2} \theta }{ \cos\theta  -  \sin \theta }

 \dfrac{ \cos {}^{2} \theta -  \sin {}^{2} \theta}{ \cos\theta -  \sin\theta }

 \dfrac{(\cos\theta -  \sin\theta )(\cos\theta  +  \sin\theta )}{\cos\theta -  \sin\theta }

Answer

\cos\theta  +   \sin\theta

Similar questions