Math, asked by Anonymous, 9 months ago

plzz solve the question........ it's rellay urgent............5th question....

Attachments:

Answers

Answered by RvChaudharY50
29

Gɪᴠᴇɴ :-

  • Sides of ∆ are in Ratio 12:17:25 .
  • Perimeter of ∆ = 540cm.

Tᴏ Fɪɴᴅ :-

  • Area of This ∆ ?

Fᴏʀᴍᴜʟᴀ ᴜsᴇᴅ :-

Heron's Formula For Area of ∆ with sides a ,b & c is :-

☛ √[s * (s - a) * (s - b) * (s - c) ] , where s = semi - Perimeter of The ∆ .

Sᴏʟᴜᴛɪᴏɴ :-

Let us Assume That, Sides of ∆ are 12x , 17x & 25x Respectively .

Than,

➼ 12x + 17x + 25x = 540

➼ 54x = 540

➼ x = 10

Therefore,

Sides of are :-

➼ 12x = 12*10 = 120 .

➼ 17x = 17 * 10 = 170 .

25x = 25 * 10 = 250.

Now,

➼ Semi - Perimeter = (Perimeter)/2 = 540/2 = 270 .

So, Putting All Values in Heron's Formula Now, we get :-

➼ Req. Area of ∆ = √[270 * (270 - 120) * (270 - 170) * (270 - 250)

➼ Req. Area of ∆ = √[270 * 150 * 100 * 20 ]

➼ Req. Area of ∆ = √[ 30 * 9 * 30 * 5 * 10² * 5 * 4 ]

➼ Req. Area of ∆ = √[ (30)² * (3)² * (5)² * (10)² * (2)² ]

➼ Req. Area of ∆ = 30 * 3 * 5 * 10 * 2

➼ Req. Area of ∆ = 90 * 100

➼ Req. Area of ∆ = 9000cm². (Ans.)

Hence, Area of will be 9000cm².

Answered by Anonymous
15

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

{\star{\sf{\green{ \: sides \: of \: triangle \: are \: in\: ratio \: 12 :17 :25 }}}} \\

{\star{\sf{\green{ \: its \: primeter \: is \: 540}}}}

{\bf{\blue{\underline{To:Find:}}}}

{\star \: {\sf{\green{ \: its \: area}}}}

{\bf{\blue{\underline{Now:}}}}

  • Suppose that the sides ,in meters are 12x,17x,25x.

Then we know that

→12x+17x+25x= 540(perimeter of triangle)

→54x=540

→x = 540/54

\boxed{\bf{\purple{  x = 10}}} \\  \\

Here,

  • 12x =12(10)=120
  • 17x=17(10)=170
  • 25x=25(10)=250

\underline{\diamond{\sf{\green{ \: using \: herons \: formula}}}}

{\purple{\underline{\boxed{ \bf{Semi-perimeter \: of \: the \: triangle (s) =  \frac{a + b + c}{2} }}}}}

{\bf{\implies{ \frac{120 + 170 + 250}{2} }}}\\ \\

{\bf{\implies{ \frac{540}{2} m}}}\\ \\

{\bf{\implies{ s = 270m }}}\\ \\

{ \boxed{\bf{\purple{ \: area =  \sqrt{s(s - a)(s - b)(s - c)} }}}}\\ \\

{\bf{\implies{  \sqrt{270(270 - 12)(270 - 17)(270 - 25)} }}}\\ \\

{\bf{\implies{  \sqrt{270(150)(100)(20)} }}}\\ \\

{\bf{\implies{  9000c {m}^{2} }}}\\ \\

{\bf{\blue{\underline{hence \: its \: area \: is \:  = 9000c {m}^{2} }}}}

Similar questions