Math, asked by Sanvhi1, 1 year ago

plzz solve this fast

Attachments:

Aiesha: under root( 1+ cos theta / 1- cos theta), rationalise it and get under root (1+ cos theta)²/sin²theta. which will be equal to 1+ cos theta /sin theta. separating the numerators you will get cosec theta +cot theta.
Aiesha: hope it helps you

Answers

Answered by arpit281
1
this answer is absolutely correct
Attachments:
Answered by CaptainBrainly
4
HEYA!!!!

Here is your answer :
__________________________

From LHS :

 \sqrt{ \frac{1 + \cos}{1 -  \cos} }  =  -  -  -  -  -  \\  \\ rationalize \: the \: denominator \\  \\  =  \sqrt{ \frac{1 + cos}{1 - cos} . \frac{1 + cos}{1 - cos} }  \\  \\  =  \sqrt{ \frac{ {(1 + cos)}^{2} }{1 -  {cos}^{2} } }  \\  \\  =  \sqrt{  \frac{ {(1 + cos)}^{2} }{ {sin}^{2} } }  \\  \\  =  \frac{1 + cos}{sin}  \\  \\  =  \frac{1}{sin}  +  \frac{cos}{sin}  \\  \\  = cosec + cot \:  \\  \\

LHS = RHS



HOPE THIS HELPS U. . .
Similar questions