Math, asked by kingofbrainly012, 11 months ago

Plzz solve this problem.. I am Not getting the answer​

Attachments:

Answers

Answered by Anonymous
7

Given :

  • In ΔABC, \angle{B\:=\:90\:^\circ}
  • D is the midpoint of BC.

To prove :

  • \bold{AC^2\:=\:AD^2\:+\:3\:CD^2}

Proof :

In Δ ABD, \angle{B\:=\:90\:^\circ}

° By using pythagoras theorem,

\sf{AD^2\:=\:AB^2\:+\:BD^2\:\:\:(1)}

Now, consider the ΔABC.

D is the midpoint of BC.

\sf{\big[Given\big]}

° \bold{BD\:=\:DC\:\:\:(2)}

\bold{\angle{B\:=\:90\:^\circ\:\:\:(Given)}}

° Using pythagoras theorem,

\sf{AC^2\:=\:AB^2\:+\:BC^2\:}

\sf{AC^2\:=\:AB^2\:+\:(BD\:+\:DC)^2}

\sf{\big[\because\:BC\:=\:BD\:+\:DC\:\:\:(B-D-C)\big]}

\sf{AC^2\:=\:AB^2\:+\:BD^2\:+\:2BD\:\times\:DC\:+\:DC^2}

\bold{\big[Using\:the\:identity\:(a+b)^2\:=\:a^2\:+\:2ab\:+\:b^2\big]}

\sf{AC^2\:=\:AB^2\:+\:CD^2\:+\:2CD\:\times\:CD\:+\:CD^2}

\bold{\big[From\:equation(2)\:BD\:=\:DC\big]}

\sf{AC^2\:=\:AB^2\:+\:CD^2\:+\:2CD^2\:+\:CD^2}

\sf{AC^2\:=\:AB^2\:+\:CD^2\:+\:CD^2\:+\:2CD^2}

\sf{AC^2\:=\:AB^2\:+\:2CD^2\:+\:2CD^2}

\sf{AC^2\:=\:AB^2\:+\:4CD^2\:\:\:(3)}

Now, subtract equation (1) from (3),

\sf{AB^2+4CD^2\:-(AB^2+CD^2)\:=\:AC^2-AD^2}

\bold{\big[Using\:equation\:(2)\big]}

\sf{\cancel{AB^2}+4CD^2\cancel{-AB^2}-CD^2=AC^2-AD^2}

\sf{4CD^2-CD^2=AC^2-AD^2}

\sf{3CD^2\:=\:AC^2-AD^2}

\sf{3CD^2+AD^2=AC^2}

\large{\boxed{\bold{AC^2\:=\:AD^2\:+\:3CD^2}}}

Attachments:
Similar questions