plzz solve this question fast i will mark you as brainlist
Attachments:
Answers
Answered by
0
Here is your answer
taking x in place of theta
1) Take LHS
sec² x + cosec² x
= Sec² x [ 1 + (cosec² x/sec² x) ]
= sec² x [ 1 + (cos² x/sin² x)]
{ °•° we have,
cosec x = (1/sin x) and sec x= (1/cos x)
cosec x/ sec x= (cos x/sin x)= cot x}
= sec² x( 1 + cot² x)
{°•° cosec² x - cot² x= 1
cosec² x = 1 + cot² x}
= sec²x * cosec² x
= RHS
=============<<<>>>============
2)
Taking a in place of Alpha
given,
sec a =2/√3
we have,
sin = Opposite / Hypotenuse
cos = Adjacent / Hypotenuse
sec = 1/cos= (Hyp/Adj)
•°•Hyp = 2 and Adj= √3
From Pythagoras rule,
Hyp² = Opp² + Adj²
=> Opp² = Hyp² - Adj²
Opp² = 4 - 3=1
Opp= √1= 1
cosec = 1/sin= (Hyp/Opp)
cosec x= 2/1= 2
Now,
1-[cosec x/(1+ cosec x)]
=(1+ cosec x - cosec x)/(1+ cosec x)
= 1/(1 + cosec x)
= 1/(1+2)
= 1/3
:)
Hope it helps
taking x in place of theta
1) Take LHS
sec² x + cosec² x
= Sec² x [ 1 + (cosec² x/sec² x) ]
= sec² x [ 1 + (cos² x/sin² x)]
{ °•° we have,
cosec x = (1/sin x) and sec x= (1/cos x)
cosec x/ sec x= (cos x/sin x)= cot x}
= sec² x( 1 + cot² x)
{°•° cosec² x - cot² x= 1
cosec² x = 1 + cot² x}
= sec²x * cosec² x
= RHS
=============<<<>>>============
2)
Taking a in place of Alpha
given,
sec a =2/√3
we have,
sin = Opposite / Hypotenuse
cos = Adjacent / Hypotenuse
sec = 1/cos= (Hyp/Adj)
•°•Hyp = 2 and Adj= √3
From Pythagoras rule,
Hyp² = Opp² + Adj²
=> Opp² = Hyp² - Adj²
Opp² = 4 - 3=1
Opp= √1= 1
cosec = 1/sin= (Hyp/Opp)
cosec x= 2/1= 2
Now,
1-[cosec x/(1+ cosec x)]
=(1+ cosec x - cosec x)/(1+ cosec x)
= 1/(1 + cosec x)
= 1/(1+2)
= 1/3
:)
Hope it helps
VemugantiRahul:
is it (1-cosec x)/ (1+ cosec x)
Answered by
0
Answer:
*ਜਮੀਨ ਤੇ ਇੱਕ ਬਿੰਦੂ ਤੋਂ , ਜੋ ਮੀਨਾਰ ਦੇ ਅਧਾਰ ਬਿੰਦੂ ਤੋਂ 30 ਮੀਟਰ ਦੀ ਦੂਰੀ ਤੇ ਹੈ ਅਤੇ ਮੀਨਾਰ ਦੇ ਸਿਖਰ ਦਾ ਉਚਾਣ ਕੋਣ 30° ਹੈ l ਮੀਨਾਰ ਦੀ ਉਚਾਈ ਪਤਾ ਕਰੋ ।*
1️⃣ 30√3
2️⃣ 10√3
3️⃣ 10/√3
4️⃣ ਇਹਨਾ ਚੋਂ ਕੋਈ ਨਹੀਂ
Similar questions