Math, asked by priya5229, 1 year ago

plzz solve yr.. plzz urgent...

Attachments:

Answers

Answered by MaheswariS
0

Solution:

I have applied decomposition method to find the integral of the given function.

In this method the given non integrable function is modified and splitted into two or more integrable functions.

\int{\frac{1+sinx}{1-sinx}}\:dx

=\int{\frac{1+sinx}{1-sinx}}.\frac{1+sinx}{1+sinx}\:dx

=\int{\frac{(1+sinx)^2}{1-sin^{2}x}}\:dx

=\int{\frac{1+sin^{2}x+2sinx}{cos^{2}x}}\:dx

=\int{[\frac{1}{cos^{2}x}}+\frac{sin^{2}x}{cos^{2}x}+\frac{2sinx}{cos^{2}x}]\:dx

=\int{[sec^{2}x+tan^{2}x+2secx\:tanx]\:dx

=\int{[sec^{2}x+sec^{2}x-1+2secx\:tanx]\:dx

=\int{[2sec^{2}x-1+2secx\:tanx]\:dx

=2\int{sec^{2}x}\:dx-\int{dx}+2\int{secx.tanx}\:dx

=2tanx-x+2secx+C

I hope this answer helps you

Answered by knjroopa
0

Answer:

2 tan x + 2 sec x - x + c

Step-by-step explanation:

Given ∫ 1 + sin x/1 – sin x dx

          Multiply and divide by (1 + sin x)

          ∫ (1 + sin x) ^2 / (1 – sin^2 x) dx

         ∫ (1 + sin^2 x + 2 sin x) / cos ^2 x dx

       ∫ (1 / cos ^2 x dx + ∫ 2. Sin x / cos x . 1 / cos x dx + ∫ sin ^2 x / cos ^2 x dx

         ∫ sec ^2 x dx + 2 ∫ tan x. sec x dx + ∫ tan ^2 x dx

         tan x + 2 sec x + tan x + ∫ (sec ^2 x – 1) dx

          tan x + 2 sec x + tan x - x  

            2 tan x + 2 sec x – x + c


Similar questions